Tọa độ Của Vectơ - Tọa độ Của điểm
Có thể bạn quan tâm
1. Lý thuyết
Với hai điểm $A(x_A;y_A)$ và $B(x_B;y_B)$ ta có:
Tọa độ của vectơ AB là: $\vec{AB}=(x_B-x_A;y_B-y_A)$
Độ dài của vectơ AB là: $AB=|AB|=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}$
Với hai vectơ $\vec{a}(x_1;y_1)$ và $\vec{b}(x_2;y_2)$ ta có:
$\vec{a}=x_1.\vec{i}+y_1.\vec{j}$ với $\vec{i}(1;0)$ và $\vec{j}(0;1)$ là các vectơ đơn vị thuộc trục Ox và Oy.
$\vec{a}=\vec{b}$ <=> $\left\{\begin{array}{ll}x_1=x_2\\y_1=y_2\end{array}\right.$
$m.\vec{a}+n.\vec{b}=m. (x_1;y_1) +n. (x_2;y_2) =(mx_1+nx_2;m.y_1+n.y_2)$
2. Bài tập tìm tọa độ vectơ – tọa độ điểm
Bài tập 1: Biểu diễn vectơ $\vec{a}$ dưới dạng: $\vec{a}=x.\vec{i}+y.\vec{j}$ biếta. $\vec{a}(1;-1)$ $\hspace{2cm}$ b. $\vec{a}(3;5)$ c. $\vec{a}(6;0)$ $\hspace{3cm}$ d. $\vec{a}(0;-2)$
Hướng dẫn:
a. Ta có: $\vec{a}=1.\vec{i}-1.\vec{j} = \vec{i}-\vec{j}$
b. Ta có: $\vec{a}=3.\vec{i}+5.\vec{j}$
c. Ta có: $\vec{a}=6.\vec{i}-0.\vec{j} = 6\vec{i}$
d. Ta có: $\vec{a}=0.\vec{i}-2.\vec{j} = -2\vec{j}$
Bài tập 2: Xác định tọa độ của vectơ $\vec{a}$ biết:
a. $\vec{a}=3\vec{i}-4\vec{j}$ $\hspace{2cm}$ b. $\vec{a}=-2\vec{i}+\dfrac{2}{3}\vec{j}$ c. $\vec{a}=-4\vec{j}$ $\hspace{3cm}$ b. $\vec{a}=-7\vec{i}$
Hướn dẫn:
a. Ta có $\vec{a}= (3;-4)$
b. Ta có $\vec{a}= (-2;\dfrac{2}{3})$
c. Ta có $\vec{a}= (0;-4)$
d. Ta có $\vec{a}= (-7;0)$
Bài tập 3: Xác định tọa độ của vectơ $\vec{c}$ và tính độ dài của vectơ $\vec{c}$ biết:
a. $\vec{c}=\vec{a}+3\vec{b}$ với $\vec{a}(2;-1)$ và $\vec{b}(3;4)$b. $\vec{c}=2\vec{a}-5\vec{b}$ với $\vec{a}(-1;2)$ và $\vec{b}(-2;-3)$
Hướng dẫn:
a. Ta có: $\vec{c}=\vec{a}+3\vec{b}=(2;-1)+3(3;4)=(2+9;-1+12)=(11;11)$
Độ dài vectơ $\vec{c}$ là: $|\vec{c}|=\sqrt{11^2+11^2}=11\sqrt{2}$
b. Ta có: $\vec{c}=2\vec{a}-5\vec{b}=2.(-1;2)-5.(-2;-3)=(-2+10;4+15)=(8;19)$
Độ dài vectơ $\vec{c}$ là: $|\vec{c}|=\sqrt{8^2+19^2}=5\sqrt{17}$
Bài tập 4: Cho hai điểm $A(-1;1)$ và $B(1;3)$
a. Xác định tọa độ của các vectơ $\vec{AB}$ và $\vec{BA}$b. Tìm tọa độ điểm M sao cho: $\vec{BM}(3;0)$c. Tìm tọa độ của điểm N sao cho: $\vec{NA}(1;1)$
Hướng dẫn:
a. Ta có: $\vec{AB}(2;2)$ và $\vec{BA}(-2;-2)$
b. Giả sử tọa độ của điểm M là $M(x;y)$
Khi đó: $\vec{BM}=(x-1;y-3)$. Mà $\vec{BM}(3;0)$
=> $\left\{\begin{array}{ll}x-1=3\\y-3=0\end{array}\right.$ <=> $\left\{\begin{array}{ll}x=4\\y=3\end{array}\right.$ <=> $M(4;3)$
c. Giả sử tọa độ của điểm N là $N(x;y)$
Khi đó: $\vec{NA}=(-1-x;1-y)$. Mà $\vec{NA}(1;1)$
=> $\left\{\begin{array}{ll}-1-x=1\\1-y=1\end{array}\right.$ <=> $\left\{\begin{array}{ll}x=-2\\y=0\end{array}\right.$ <=> $N(-2;0)$
Bài giảng trên thầy đã chia sẻ với các bạn một số công thức và bài tập liên quan tới việc tìm tọa độ của vectơ và tìm tọa độ của một điểm. Hy vọng các bạn có một bài học bổ ích.
SUB ĐĂNG KÍ KÊNH GIÚP THẦY NHÉ
Từ khóa » Toạ độ Của điểm Và Vecto
-
Tọa độ Vectơ - Điểm
-
Tìm Tọa độ Của Vecto, Của điểm Cực Hay - Toán Lớp 12
-
Bài 4. Hệ Trục Tọa độ - Củng Cố Kiến Thức
-
Lý Thuyết Hệ Trục Tọa độ | SGK Toán Lớp 10
-
Tìm Tọa độ điểm, Tọa độ Vectơ Trên Mặt Phẳng Oxy
-
Các Dạng Bài Tập Về Toạ độ Của Vectơ, Toạ độ Của Một điểm Và Cách ...
-
TÌM TỌA ĐỘ CỦA ĐIỂM VÀ TỌA ĐỘ CỦA VECTƠ. BÀI TẬP TRỤC ...
-
Dạng 1: Toạ độ Vectơ - Toạ độ điểm | 7scv
-
Tọa độ Véc Tơ Trong Hệ Trục Oxyz - Cộng đồng Học ...
-
50 Bài Toán Về Tọa độ điểm, Tọa độ Vectơ (có đáp án 2022) – Toán 12
-
Tổng Hợp Công Thức Toán Học Cấp 3 Phần Vecto
-
Xác định Tọa độ điểm, Tọa độ Vectơ
-
Toán 12 - Bài 1: Toạ độ Của điểm Và Vectơ Trong Không Gian
-
Toán 12 - Ôn Tập: Tìm Tọa độ Vectơ, Tọa độ điểm Thuộc đường – Mặt