Bài 4. Hệ Trục Tọa độ - Củng Cố Kiến Thức
Có thể bạn quan tâm
1. Trục và độ dài đại số trên trục
a) Trục toạ độ (hay gọi tắt là trục) là một đường thẳng trên đó đã xác định một điểm O gọi là điểm gốc và một vectơ đơn vị $\overrightarrow e $.
Ta kí hiệu trục đó là (O ; $\overrightarrow e $)
![]()
b) Cho M là một điểm tuỳ ý trên trục (O ; $\overrightarrow e $). Khi đó có duy nhất một số k sao cho $\overrightarrow {OM} = k\overrightarrow e $. Ta gọi số k đó là toạ độ của điểm M đối với trục đã cho.
c) Cho hai điểm A và B trên trục (O ; $\overrightarrow e $). Khi đó có duy nhất số a sao cho $\overrightarrow {AB} = a\overrightarrow e $. Ta gọi số a đó là độ dài đại số của vectơ $\overrightarrow {AB} $ đối với trục đã cho và kí hiệu $a = \overline {AB} $.
Nhận xét
Nếu $\overrightarrow {AB} $ cùng hướng với $\overrightarrow e $ thì $\overline {AB} = AB$, còn nếu $\overrightarrow {AB} $ ngược hướng với $\overrightarrow e $ thì $\overline {AB} = - AB$.
Nếu hai điểmA và B trên trục (O ; $\overrightarrow e $) có toạ đô lần lượt là a và b thì $\overline {AB} = b - a$.
2. Hệ trục tọa độ
a) Định nghĩa
Hệ trục toạ độ $\left( {O;\overrightarrow i ;\overrightarrow j } \right)$ gồm hai trục $\left( {O;\overrightarrow i } \right)$ và $\left( {O;\overrightarrow j } \right)$ vuông góc với nhau. Điểm gốc O chung của hai trục gọi là gốc toạ độ. Trục $\left( {O;\overrightarrow i } \right)$được gọi là trục hoành và kí hiệu là Ox, trục $\left( {O;\overrightarrow j } \right)$ được gọi là trục tung và kí hiệu là Oy. Các vectơ $\overrightarrow i $ và $\overrightarrow j $ là các vectơ đơn vị trên Ox và Oy và $\left| {\overrightarrow i } \right| = \left| {\overrightarrow j } \right| = 1$. Hệ trục toạ độ $\left( {O;\overrightarrow i ;\overrightarrow j } \right)$còn được kí hiệu là Oxy.

b) Tọa độ của vectơ
$\overrightarrow u = \left( {x;y} \right) \Leftrightarrow \overrightarrow u = x\overrightarrow i + y\overrightarrow j $
Nhận xét
Từ định nghĩa toạ độ của vectơ, ta thấy hai vectơ bằng nhau khi và chỉ khi chúng có hoành độ bằng nhau và tung độ bằng nhau.
Nếu $\overrightarrow u = \left( {x;y} \right);\overrightarrow {u'} = \left( {x';y'} \right)$ thì
$\overrightarrow u = \overrightarrow {u'} \Leftrightarrow \left\{ \begin{array}{l} x = x'\\ y = y' \end{array} \right.$
Như vậy, mỗi vectơ được hoàn toàn xác định khi biết toạ độ của nó.
c) Toạ độ của một điểm
Trong mặt phẳng toạ độ Oxy cho một điểm M tuỳ ý. Toạ độ của vectơ $\overrightarrow {OM} $ đối với hệ trục Oxy được gọi là toạ độ của điểm M đối với hệ trục đó.

$M = \left( {x;y} \right) \Leftrightarrow \overrightarrow {OM} = x\overrightarrow i + y\overrightarrow j $
Chú ý: nếu $M{M_1} \bot Ox,M{M_2} \bot Oy$ thì $x = \overline {O{M_1}} ,y = \overline {O{M_2}} $.
d) Liên hệ giữa tọa độ của điểm và tọa độ của vectơ trong mặt phẳng
Cho điểm $A\left( {{x_A};{y_A}} \right)$ và $B\left( {{x_B};{y_B}} \right)$. Ta có:
$\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A}} \right)$
3. Tọa độ của các vectơ $\overrightarrow u + \overrightarrow v ,\overrightarrow u - \overrightarrow v ,k\overrightarrow u $
Ta có các công thức sau:
Cho $\overrightarrow u = \left( {{u_1};{u_2}} \right),\overrightarrow v = \left( {{v_1};{v_2}} \right)$. Khi đó:
$\begin{gathered} \overrightarrow u + \overrightarrow v = \left( {{u_1} + {v_1};{u_2} + {v_2}} \right); \hfill \\ \overrightarrow u - \overrightarrow v = \left( {{u_1} - {v_1};{u_2} - {v_2}} \right); \hfill \\ k\overrightarrow u = \left( {k{u_1};k{u_2}} \right),k \in R \hfill \\ \end{gathered} $
4. Tọa độ trung điểm của đoạn thẳng. Tọa độ của trọng tâm tam giác
a) Cho đoạn thẳng AB có $A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)$. Ta dễ dàng chứng minh được toạ độ trung điểm $I\left( {{x_I};{y_I}} \right)$ của đoạn thẳng AB là :
${x_I} = \frac{{{x_A} + {x_B}}}{2};{y_I} = \frac{{{y_A} + {y_B}}}{2}$
b) Cho tam giác ABC có $A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right),C\left( {{x_C};{y_C}} \right)$. Khi đó toạ đô của trọng tâm $G\left( {{x_G};{y_G}} \right)$ của tam giác ABC được tính theo công thức:
${x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3};{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}$
Từ khóa » Toạ độ Hai Vecto Cùng Hướng
-
Chứng Minh 2 Vecto Cùng Phương, 2 Vecto Cùng Hướng Hay, Chi Tiết
-
Chứng Minh Hai Vecto Cùng Phương, Không Cùng Phương Cực Hay
-
Chứng Minh Hai Vecto Cùng Phương, Không Cùng Phương Chi Tiết
-
Thế Nào Là Hai Vecto Cùng Phương - TopLoigiai
-
Sự Cùng Phương, Cùng Hướng Của Hai Vectơ
-
Tọa Độ 2 Vectơ Cùng Hướng - Tọa Độ Véc Tơ Trong Hệ Trục Oxyz
-
Sự Cùng Phương Của Hai Véctơ – Ba điểm Thẳng Hàng
-
Tọa độ Véc Tơ Trong Hệ Trục Oxyz - Cộng đồng Học ...
-
Chủ đề 3: Chứng Minh Hai Vecto Cùng Phương, Không Cùng Phương
-
Cách Chứng Minh 2 Vectơ Cùng Phương đơn Giản Nhất
-
Lý Thuyết Về Tích Vô Hướng Của 2 Vectơ Và Các Dạng Bài Tập
-
Hai Vectơ Cùng Phương, Bằng Nhau, đối Nhau - Abcdonline
-
Lý Thuyết Các định Nghĩa Về Véc Tơ Toán 10
-
Tóm Tắt Toàn Bộ Lý Thuyết Về Vectơ - Trường Quốc Học