Bài Tập Về Quy Tắc Hình Bình Hành Của Vecto Cực Hay, Chi Tiết
Có thể bạn quan tâm
- Chuyên đề Toán 10
- Các dạng bài tập Toán 10
- Giải Chuyên đề học tập Toán 10 (đầy đủ)
- Lý thuyết Toán 10
- Chuyên đề Toán thực tế lớp 10 (có lời giải)
- Kết nối tri thức
- Các dạng bài tập Toán 10 Kết nối tri thức
- Giải sgk Toán 10 - Kết nối
- Giải Chuyên đề học tập Toán 10 - Kết nối
- Giải SBT Toán 10 - Kết nối
- Lý thuyết Toán 10 Kết nối tri thức
- Bài tập trắc nghiệm Toán 10 Kết nối tri thức
- Bộ đề thi Toán 10 Kết nối tri thức (có đáp án)
- Cánh diều
- Các dạng bài tập Toán 10 Cánh diều
- Giải sgk Toán 10 Cánh diều
- Giải Chuyên đề học tập Toán 10 Cánh diều
- Giải SBT Toán 10 Cánh diều
- Lý thuyết Toán 10 Cánh diều
- 1000 Bài tập trắc nghiệm Toán 10 Cánh diều
- Bộ đề thi Toán 10 Cánh diều (có đáp án)
- Chân trời sáng tạo
- Các dạng bài tập Toán 10 Chân trời sáng tạo
- Giải sgk Toán 10 - Chân trời
- Giải Chuyên đề học tập Toán 10 - Chân trời
- Giải SBT Toán 10 - Chân trời
- Lý thuyết Toán 10 Chân trời sáng tạo
- 1000 Bài tập trắc nghiệm Toán 10 Chân trời sáng tạo
- Bộ đề thi Toán 10 Chân trời sáng tạo (có đáp án)
- HOT Sale 40% sách Toán - Văn - Anh 10 Vietjack 12-12 trên Shopee mall
Bài viết Bài tập về Quy tắc hình bình hành của vecto với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập về Quy tắc hình bình hành của vecto.
- Cách giải bài tập Quy tắc hình bình hành của vecto
- Ví dụ minh họa bài tập Quy tắc hình bình hành của vecto
Bài tập về Quy tắc hình bình hành của vecto (cực hay, chi tiết)
(199k) Xem Khóa học Toán 10 KNTTXem Khóa học Toán 10 CDXem Khóa học Toán 10 CTST
A. Phương pháp giải
Áp dụng quy tắc hình bình hành và các tính chất của hình hình hành đã học ở lớp 8 để giải bài tập.
| Quy tắc hình bình hành Nếu ABCD là hình bình hành thì ta có Quy tắc này cũng đúng nếu ta xuất từ các đỉnh khác của hình bình hành. | |
B. Ví dụ minh họa
Ví dụ 1: Cho hình bình hành ABCD tâm O. Tính các vecto sau
Hướng dẫn giải:
a, theo quy tắc hình bình hành
b, Vì AB // CD nên ta có
Do đó:
c,
= (sử dụng tính chất giao hoán)
= (quy tắc ba điểm)
d,
Vì ABCD là hình bình hành tâm O nên O là trung điểm của AC
Suy ra AO = OC
Ta có: (tính chất giao hoán)
= (quy tắc ba điểm)
Ví dụ 2: Cho hình chữ nhật ABCD có AB = 4a và AD = 3a. Tính độ dài
Hướng dẫn giải:
ABCD là hình chữ nhật, suy ra ABCD cũng là hình bình hành, nên ta áp dụng quy tắc hình bình hành ta được:
Suy ra = AC
Ta lại có: AC =
Vậy = 5a.
Ví dụ 3: Cho hình bình hành ABCD tâm I. Khẳng định nào sau đây là khẳng định sai?
Hướng dẫn giải:
+ Ta có I là tâm của hình bình hành ABCD nên I là trung điểm của AC
Do đó đúng
+ Do ABCD là hình bình hành đúng
+ AC và BD là hai đường chéo của hình bình hành nên chúng cắt nhau, do đó hai vecto và
không cùng phương nên vecto
không thể bằng vecto
(nhớ lại khái niệm hai vecto bằng nhau là cùng hướng và có độ dài bằng nhau)
C sai
+ Ta có: theo quy tắc hình bình hành
D đúng
Ví dụ 4: Cho tam giác ABC vuông tại A, đường cao AH. Gọi I và K lần lượt là chân đường vuông góc hạ từ H lên AB và AC. Khẳng định nào sau đây là sai?
Hướng dẫn giải:
Ví dụ 5: Cho hình bình hành ABCD với E và F lần lượt là trung điểm của AD và BC. Khẳng định nào sau đây sai?
Hướng dẫn giải:
+ Ta có: ABCD là hình bình hành nên theo quy tắc hình bình hành ta được: (1)
A đúng
+ Lại có: ABCD là hình bình hành
(199k) Xem Khóa học Toán 10 KNTTXem Khóa học Toán 10 CDXem Khóa học Toán 10 CTST
Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có đáp án hay khác khác:
- Hai vecto cùng phương, hai vecto cùng hướng hay, chi tiết
- Bài tập về tổng của hai vecto (cực hay, chi tiết)
- Bài tập về hiệu của hai vecto (cực hay, chi tiết)
- Bài tập về Quy tắc trung điểm của vecto (cực hay, chi tiết)
- Bài tập về Quy tắc trọng tâm tam giác của vecto (cực hay, chi tiết)
Để học tốt lớp 10 các môn học sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
- HOT 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k)
Tủ sách VIETJACK shopee lớp 10-11 (cả 3 bộ sách):
- Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 10 (từ 99k )
- Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 11 (từ 99k )
- Ra mắt Sách 50 đề THPT quốc gia form 2026 toán, văn, anh.... (từ 80k/1 cuốn)
TÀI LIỆU CLC DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10
+ Bộ giáo án, bài giảng powerpoint, đề thi file word có đáp án 2025 tại https://tailieugiaovien.com.vn/
+ Hỗ trợ zalo: VietJack Official
+ Tổng đài hỗ trợ đăng ký : 084 283 45 85
Đề thi giữa kì, cuối kì 10
( 254 tài liệu )
Bài giảng Powerpoint Văn, Sử, Địa 10....
( 42 tài liệu )
Giáo án word 10
( 95 tài liệu )
Chuyên đề dạy thêm Toán, Lí, Hóa ...10
( 71 tài liệu )
Đề thi HSG 10
( 8 tài liệu )
Trắc nghiệm đúng sai 10
( 41 tài liệu )
xem tất cảĐã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube: Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
Trang trước Trang sau vecto.jsp Giải bài tập lớp 10 sách mới các môn học- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều
Học cùng VietJack
Dịch vụ nổi bật:
-
Giải bài tập SGK & SBT -
Tài liệu giáo viên -
Sách -
Khóa học -
Thi online -
Hỏi đáp
Trang web chia sẻ nội dung miễn phí dành cho người Việt.
Giải bài tập:
Lớp 1-2-3 Lớp 4 Lớp 5 Lớp 6 Lớp 7 Lớp 8 Lớp 9 Lớp 10 Lớp 11 Lớp 12 Lập trình Tiếng Anh
Chính sách
Chính sách bảo mật
Hình thức thanh toán
Chính sách đổi trả khóa học
Chính sách hủy khóa học
Tuyển dụng
Liên hệ với chúng tôi
Tầng 2, G4 - G5 Tòa nhà Five Star Garden, số 2 Kim Giang, Phường Khương Đình, Hà Nội
Phone: 084 283 45 85
Email: [email protected]
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
Người đại diện: Nguyễn Thanh Tuyền
Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2015 © All Rights Reserved.
Từ khóa » Chứng Minh Quy Tắc Hình Bình Hành Vecto
-
Quy Tắc Hình Bình Hành
-
【Quy Tắc Hình Bình Hành】Lý Thuyết Và Bài Tập Ví Dụ Cơ Bản
-
Quy Tắc Hình Bình Hành: Lý Thuyết Và Các Dạng Bài Tập điển Hình
-
Quy Tắc Hình Bình Hành Vecto: Lý Thuyết & Bài Tập Vận Dụng (Vật ...
-
Quy Tắc Hình Bình Hành Là Gì? Công Thức Và ứng Dụng - TopLoigiai
-
Bài Tập Về Quy Tắc Hình Bình Hành Của Vecto ...
-
Chuyên đề Vectơ - Hình Học 10
-
Tổng Quát Kiến Thức Về Hình Bình Hành - Không Nên Bỏ Qua
-
Bài Tập Về Quy Tắc Hình Bình Hành Vecto, Công ...
-
Bài Tập Về Quy Tắc Hình Bình Hành Vecto, Công ...
-
Hình Bình Hành Là Gì? Quy Tắc Hình Bình Hành Và Các Dạng Toán Cơ ...
-
Các Quy Tắc Hình Bình Hành Quy Tắc 3 điểm Và Quy Tắc Trừ Hai Vectơ
-
Chuyên đề Phương Pháp Toạ độ Trong Không Gian (phần 1)