Bất đẳng Thức Bunhiacopxki Là Gì ? - Hoc24
Có thể bạn quan tâm
HOC24
Lớp học Học bài Hỏi bài Giải bài tập Đề thi ĐGNL Tin tức Cuộc thi vui Khen thưởng- Tìm kiếm câu trả lời Tìm kiếm câu trả lời cho câu hỏi của bạn
Lớp học
- Lớp 12
- Lớp 11
- Lớp 10
- Lớp 9
- Lớp 8
- Lớp 7
- Lớp 6
- Lớp 5
- Lớp 4
- Lớp 3
- Lớp 2
- Lớp 1
Môn học
- Toán
- Vật lý
- Hóa học
- Sinh học
- Ngữ văn
- Tiếng anh
- Lịch sử
- Địa lý
- Tin học
- Công nghệ
- Giáo dục công dân
- Tiếng anh thí điểm
- Đạo đức
- Tự nhiên và xã hội
- Khoa học
- Lịch sử và Địa lý
- Tiếng việt
- Khoa học tự nhiên
- Hoạt động trải nghiệm
- Hoạt động trải nghiệm, hướng nghiệp
- Giáo dục kinh tế và pháp luật
Chủ đề / Chương
Bài học
HOC24
Khách vãng lai Đăng nhập Đăng ký Khám phá Hỏi đáp Đề thi Tin tức Cuộc thi vui Khen thưởng- Tất cả
- Toán
- Vật lý
- Hóa học
- Sinh học
- Ngữ văn
- Tiếng anh
- Lịch sử
- Địa lý
- Tin học
- Công nghệ
- Giáo dục công dân
- Tiếng anh thí điểm
- Hoạt động trải nghiệm, hướng nghiệp
- Giáo dục kinh tế và pháp luật
Câu hỏi
Hủy Xác nhận phù hợp Chọn lớp Tất cả Lớp 12 Lớp 11 Lớp 10 Lớp 9 Lớp 8 Lớp 7 Lớp 6 Lớp 5 Lớp 4 Lớp 3 Lớp 2 Lớp 1 Môn học Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Tiếng anh thí điểm Đạo đức Tự nhiên và xã hội Khoa học Lịch sử và Địa lý Tiếng việt Khoa học tự nhiên Hoạt động trải nghiệm Hoạt động trải nghiệm, hướng nghiệp Giáo dục kinh tế và pháp luật Mới nhất Mới nhất Chưa trả lời Câu hỏi hay ✓ ℍɠŞ_ŦƦùM $₦G ✓ 24 tháng 11 2017 lúc 17:58Bất đẳng thức Bunhiacopxki là gì ?
Lớp 8 Toán Những câu hỏi liên quan- Su Thai
viết công thức tổng quát bất đẳng thứa cói và bunhiacopxki
Xem chi tiết Lớp 9 Toán Câu hỏi của OLM 2 0 Gửi Hủy Hoài Nguyễn 1 tháng 4 2018 lúc 21:27 (a² + b²)(c² + d²) ≥ (ac + bd)²Chứng minh: (a² + b²)(c² + d²) ≥ (ac + bd)² ↔ (ac)² + (ad)² + (bc)² + (bd)² ≥ (ac)² + 2abcd + (bd)² ↔ (ad)² + (bc)² ≥ 2abcd ↔ (ad)² - 2abcd + (bc)² ≥ 0 ↔ (ad - bc)² ≥ 0Dấu " = " xảy ra khi {\displaystyle {\frac {a}{c}}={\frac {b}{d}}} Đúng 0 Bình luận (0) Gửi Hủy Su Thai 1 tháng 4 2018 lúc 21:22cosi nhé
Đúng 0 Bình luận (0) Gửi Hủy- Kirigawa Kazuto
Bất đẳng thức Cauchy - Schwars
Bất đẳng thức AM - GM
Bất đẳng thức Bunhiacopxki
Bất đẳng thức Mincopxki
Cho tớ công thức của các BĐT trên , giúp với@Ace Legona
Xem chi tiết Lớp 8 Toán Ôn tập cuối năm phần số học 2 0 Gửi Hủy Lightning Farron 23 tháng 6 2017 lúc 22:31C-S với Bunhia là 1 và là 1 trg hợp của Holder dạng 2 số \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
AM-GM ng` việt gọi là cô si dạng 2 số \(a^2+b^2\ge2ab\)
Mincopski dạng 2 số \(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a+x\right)^2+\left(b+y\right)^2}\)
Đúng 0 Bình luận (1) Gửi Hủy Hoang Thiên Di 23 tháng 6 2017 lúc 22:54* BĐT Cauchy - Schwars = BĐT Bunhiacopxki
- Thông thường :
( a2 + b2 )(c2 + d2 ) \(\ge\left(ac+bd\right)^2\)
Dấu "=" xảy ra tại : \(\dfrac{a}{c}=\dfrac{b}{d}\)
- Tổng quát với các bộ số : a1 , a2 , a3 , ... , an và : b1 , b2 , ... , bn
(a12 + a22 + ... + an2)(b12 + b22 + ... + bn2 ) \(\ge\left(a_1b_1+a_2b_2+...+a_nb_n\right)\)
Dấu "=" xảy ra tại : \(\dfrac{a_1}{b_1}=\dfrac{a_2}{b_2}=...=\dfrac{a_n}{b_n}\)
* BĐT AM-GM
- trung bình nhân (2 số)
với a,b \(\ge0\) , ta luôn có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\) . Dấu "=" xảy ra tại a=b
- Trung bình nhân ( n số )
Với x1 , x1 , x3 ,..., xn \(\ge0\)
Ta luôn có : \(\dfrac{x_1+x_2+...+x_n}{n}\ge\sqrt[n]{x_1x_2.....x_n}\)
Dấu "=" xảy ra khi x1 = x2 =...=xn
-Trung bình hệ số :
Với các bộ số : x1 , x1 , x3 ,..., xn \(\ge0\)và a1, a2 , a3 ,... , an ( a1 , a2 ,..., an) là c1ác hệ số
Ta có : \(\dfrac{a_1x_1+a_2x_2+...+a_nx_n}{a}\ge\sqrt[a]{x_1^{a_1}.x_2^{a_2}.....x_n^{a_n}}\)
Dấu "=" xảy ra khi x1 = x2 = xn
=================
Cái mincopxki t ko biết , ngoài ra còng có BĐT Cauchy - dạng engel => lên googl seach có
Đúng 0 Bình luận (0) Gửi Hủy- Mạc Cao Cằc
Chúc mọi người năm mứi vui vẻ :3
C/m bất đẳng thức Bunhiacopxki
Xem chi tiết Lớp 8 Toán Câu hỏi của OLM 2 0 Gửi Hủy Huyền Nhi 2 tháng 2 2019 lúc 0:04 Chứng minh: (a² + b²)(c² + d²) ≥ (ac + bd)²↔ (ac)² + (ad)² + (bc)² + (bd)² ≥ (ac)² + 2abcd + (bd)²↔ (ad)² + (bc)² ≥ 2abcd↔ (ad)² - 2abcd + (bc)² ≥ 0↔ (ad - bc)² ≥ 0 luôn đúngDáu "='' khi ad = bc Đúng 0 Bình luận (0) Gửi Hủy Hoàng Ninh 2 tháng 2 2019 lúc 6:30BĐT Bunhiacopxki:
Áp dụng cho 6 số(1,1,1,a,b,c)
\(\left(1^2+1^2+1^2\right).\left(a^2+b^2+c^2\right)\ge\left(1a+1b+1c\right)^2\)
Chứng minh:
\(\left(ax+by\right)^2\le\left(a^2+b^2\right).\left(x^2+y^2\right)\)
\(\Leftrightarrow a^2x^2+2axby+b^2y^2\le a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(\Leftrightarrow2axby\le a^2y^2+b^2x^2\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)( đpcm )
Đúng 0 Bình luận (0) Gửi Hủy- Lê Đức Khanh
chứng minh bất đẳng thức bunhiacopxki nếu (a^2+b^2)(x^2+y^2)=(ax+by)^2 thì ax=by
Xem chi tiết Lớp 8 Toán Câu hỏi của OLM 1 0 Gửi Hủy BaBie 24 tháng 8 2017 lúc 15:11a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Đúng 0 Bình luận (0) Gửi Hủy- Cao Phan Tuấn Anh
chứng minh bất đẳng thức Bunhiacopxki : (ac + bc )2 bé hơn hoặc bằng ( a2 + b2 ) . ( c2 + d2 )
Xem chi tiết Lớp 9 Toán Câu hỏi của OLM 0 0 Gửi Hủy- Đời về cơ bản là buồn......
Áp dụng bất đẳng thức Bunhiacopxki để giải phương trình:
\(x+2019\sqrt{x-2}=2\sqrt{x-1}\)
Xem chi tiết Lớp 9 Toán Violympic toán 9 0 0 Gửi Hủy- Sherry
cho a,b,c >0
CMR \(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\)
Chứng minh bằng 2 cách
C1: bất đẳng thức Cauchy
C2: Bất đẳng thức Bunhiacopxki
Xem chi tiết Lớp 8 Toán Câu hỏi của OLM 1 0 Gửi Hủy Nguyễn Tiến Dũng 11 tháng 3 2018 lúc 21:43Áp dụng BĐT \(x^2+y^2\ge2xy\) ( với a,b,c>0) ta có:
\(\frac{a^3}{b+c}+\frac{a\left(b+c\right)}{4}=\frac{a^4}{a\left(b+c\right)}+\frac{a\left(b+c\right)}{4}\ge a^2\) (1)
CMTT ta được
\(\frac{b^3}{a+c}+\frac{b\left(a+c\right)}{4}\ge b^2\) (2)
\(\frac{c^3}{a+b}+\frac{c\left(a+b\right)}{4}\ge c^2\) (3)
Cộng lần lượt từng vế của 3 BĐT (1);(2);(3) ta được:
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{a\left(b+c\right)}{4}+\frac{b\left(c+a\right)}{4}+\frac{c\left(a+b\right)}{4}\ge a^2+b^2+c^2\)
\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{2\left(ab+bc+ac\right)}{4}\ge a^2+b^2+c^2\)
\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{ab+bc+ca}{2}\) (*)
Áp dụng BĐT \(a^2+b^2+c^2\ge ab+bc+ca\)với 3 số a,b,c>0 ta được:
\(\frac{a^2+b^2+c^2}{2}\ge\frac{ab+bc+ca}{2}\)
Thay vào pt (*) ta được:
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{a^2+b^2+c^2}{2}\)
\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\left(đpcm\right)\)
k tớ nha !!!
Đúng 0 Bình luận (0) Gửi Hủy- Kan Raii
Cho mk hỏi làm thế nào để học tốt bất đẳng thức Cauchy và Bunhiacopxki ạ ??? Bạn nào có thể chia sẻ cho mk cách học đc k ạ?
Xem chi tiết Lớp 8 Toán Violympic toán 8 0 0 Gửi Hủy- Hoang Tran
SỬ DỤNG BẤT ĐẲNG THỨC BUNHIACOPXKI
Cho a,b,c>0 thỏa mãn a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{a^2+b^2+c^2}\)
MN giúp e với
Xem chi tiết Lớp 9 Toán 1 0 Gửi Hủy An Thy 27 tháng 7 2021 lúc 8:44\(P=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{\left(1+1+1\right)^2}{ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2}\) (BĐT Cauchy Schwarz)
\(=\dfrac{9}{ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2}\)
\(=\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2}+\dfrac{7}{ab+bc+ca}\)
\(\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2ac+2bc}+\dfrac{7}{ab+bc+ca}\)
\(=\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ca}\)
Ta có: \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\) .Thế vào biểu thức
\(\Rightarrow P\ge9+\dfrac{7}{\dfrac{1}{3}}=9+21=30\)
\(\Rightarrow P_{min}=30\) khi \(a=b=c=\dfrac{1}{3}\)
Đúng 2 Bình luận (1) Gửi HủyKhoá học trên OLM (olm.vn)
- Toán lớp 8 (Kết nối tri thức với cuộc sống)
- Toán lớp 8 (Cánh Diều)
- Toán lớp 8 (Chân trời sáng tạo)
- Ngữ văn lớp 8 (Kết nối tri thức với cuộc sống)
- Ngữ văn lớp 8 (Cánh Diều)
- Ngữ văn lớp 8 (Chân trời sáng tạo)
- Tiếng Anh lớp 8 (i-Learn Smart World)
- Tiếng Anh lớp 8 (Global Success)
- Khoa học tự nhiên lớp 8 (Kết nối tri thức với cuộc sống)
- Khoa học tự nhiên lớp 8 (Cánh diều)
- Khoa học tự nhiên lớp 8 (Chân trời sáng tạo)
- Lịch sử và địa lý lớp 8 (Kết nối tri thức với cuộc sống)
- Lịch sử và địa lý lớp 8 (Cánh diều)
- Lịch sử và địa lý lớp 8 (Chân trời sáng tạo)
- Giáo dục công dân lớp 8 (Kết nối tri thức với cuộc sống)
- Giáo dục công dân lớp 8 (Cánh diều)
- Giáo dục công dân lớp 8 (Chân trời sáng tạo)
- Công nghệ lớp 8 (Kết nối tri thức với cuộc sống)
Từ khóa » Bunhiacopxki Tổng Quát Lớp 9
-
Bất đẳng Thức Bunhiacopxki - Chuyên đề Toán Lớp 9 Luyện Thi Vào ...
-
Bất đẳng Thức Bunhiacopxki: Công Thức, Cách Chứng Minh Và Bài Tập ...
-
Bất Đẳng Thức Bunhiacopxki Là Gì? Công Thức Và Cách Chứng Minh
-
Bất đẳng Thức Bunhiacopxki - CungHocVui
-
Chứng Minh Bất đẳng Thức Bunhiacopxki Kèm Ví Dụ Minh Họa
-
Bất đẳng Thức Bunhiacopxki Lop 9 - 123doc
-
Những Kiến Thức Cơ Bản Về Bất đẳng Thức Bunhiacopxki - VOH
-
[Toán 9 ] Áp Dụng Bất đẳng Thức Bunhiacopxki để Tìm Giá Trị Lớn Nhất ...
-
Bài Tập Có đáp án Chi Tiết Về Bất đẳng Thức Bunhiacopxki Của Giáo ...
-
Công Thức Bất đẳng Thức Côsi Lớp 9 Hay Nhất - TopLoigiai
-
Bất đẳng Thức Bunhiacopxki
-
Bất đẳng Thức Côsi (Cauchy) Và Bài Tập áp Dụng - Gia Sư Tiến Bộ
-
Chứng Minh Bất Đẳng Thức Bunhiacopxki 3 Số, Công Thức Bất ...