Bộ đề Thi Vào Lớp 10 Môn Toán Tỉnh Đà Nẵng

Tailieumoi.vn xin giới thiệu đến các quý thầy cô, các em học sinh đang trong quá trình ôn tập tài liệu Bộ đề thi vào lớp 10 môn toán tỉnh Đà Nẵng, tài liệu bao gồm 44 trang, tuyển chọn 8 đề thi vào 10 môn Toán. Đề thi được tổng hợp từ các trường trên cả nước giúp các em học sinh có thêm tài liệu tham khảo trong quá trình ôn tập, củng cố kiến thức và chuẩn bị cho kì thi Tuyển sinh vào 10 môn Toán sắp tới. Chúc các em học sinh ôn tập thật hiệu quả và đạt được kết quả như mong đợi.

Mời các quý thầy cô và các em học sinh cùng tham khảo và tải về chi tiết tài liệu dưới đây:

KỲ THI TUYỂN SINH LỚP 10

TRUNG HỌC PHỔ THÔNG NĂM HỌC 2020 – 2021

MÔN THI: TOÁN

Thời gian:120 phút

Bài 1. (2,0 điểm)

a) Tính giá trị của biểu thức A=3+12-27-36

b) Cho biểu thức B=2x-1-1x+3x-5x.x-1 ( x>0; x khác 1). Rút gọn biểu thức B và tìm x để B = 2

Bài 2. (1,5 điểm)

Cho hàm số y=12x2

a) Vẽ đồ thị (P) của hàm số đã cho

b) Đường thẳng y = 8cắt đồ thị ( ) P tại hai điểm phân biệt Avà B,trong đó điểm B có hoành độ dương. Gọi H

làchân đường cao hạ từ A của tam giác OAB , với O là gốc tọa độ. Tính diện tích tam giác AHB(đơn vi đo trên các

trục là xentimet)

Bài 3. (1,5 điểm)

a) Giải phương trình: 3x2-7x+2=0

b) Biết rằng phương trình x2-19x+17=0 có hai nghiệm là x1;x2 không giải phương trình, hãy tính giá trị biểu

thức: P =x22x12-38x1+x1x2-32+x12x2-38x2+x1x2-32+120

Bài 4. (2,0 điểm)

a) Một số tự nhiên nhỏ hơn bình phương của nó là 20 đơn vị. Tìm số tự nhiên đó

b) Quãng đường ABgồm một đoạn lên dốc và một đoạn xuống dốc. Một người đi xe đạp từ A đến B hết 16 phút và

đi từ B về A hết 14phút. Biết vận tốc lúc lên dốc là 10 / km h , vận tốc lúc xuống dốc là 15 / km h ( vận tốc lên dốc,

xuống dốc lúc đi và về là như nhau). Tính quãng đường AB

Bài 5. (3,0 điểm)

Cho tam giác ABC nội tiếp trong đường tròn tâm O đường kính AB.Trên cung nhỏ BC của đường tròn (O) lấy điểm

D (không trùng với B và C). Gọi H là chân đường vuông góc kẻ từ C đến AB (H ∈ AB) và E là giao điểm của CH với

AD

a) Chứng minh rằng tứ giác BDEH là tứ giác nội tiếp

b) Chứng minh rằng AB2=AE.AD+BH.BA

c) Đường thẳng qua E song song với AB,cắt BC tại F. Chứng minh rằng: CDF^=90° và đường tròn ngoại tiếp tam

giác OBD đi qua trung điểm của đoạn CF.

Xem thêm

Từ khóa » đề Thi Tuyển Sinh Lớp 10 Môn Toán đà Nẵng