Các Bài Toán Nâng Cao Lớp 6 Về Lũy Thừa Hay Nhất - TopLoigiai

Mục lục nội dung I. Những kiến thức cần nhớ về lũy thừaII. Các dạng toán về lũy thừa thường gặpIII. Các bài toán nâng cao lớp 6 về lũy thừa1. Bài tập có giải chi tiết2. Bài tập lũy thừa nâng cao tự luyện (PDF)

I. Những kiến thức cần nhớ về lũy thừa

1. Lũy thừa với số mũ tự nhiên

Lũy thừa bậc n của a là tích của n thừa số bằng nhau, mỗi thừa số bằng a:

an = a.a…..a (n thừa số a) (n khác 0)

a được gọi là cơ số.

n được gọi là số mũ.

2. Nhân hai lũy thừa cùng cơ số

am. an = am+n

Khi nhân hai lũy thừa cùng cơ số, ta giữa nguyên cơ số và cộng các số mũ.

3. Chia hai lũy thừa cùng cơ số

am : an = am-n (a ≠ 0 ; m ≠ 0)

Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ số và trừ các số mũ cho nhau.

4. Lũy thừa của lũy thừa

(am)n = am.n

Ví dụ: (32)4 = 32.4 = 38

5. Nhân hai lũy thừa cùng số mũ, khác sơ số

am . bm = (a.b)m

ví dụ : 33 . 43 = (3.4)3 = 123

6. Chia hai lũy thừa cùng số mũ, khác cơ số

am : bm = (a : b)m

ví dụ : 84 : 44 = (8 : 4)4 = 24

7. Một vài quy ước khác

1n = 1 ví dụ : 12017 = 1

a0 = 1 ví dụ : 20170 = 1

II. Các dạng toán về lũy thừa thường gặp

1. Dạng 1: Viết gọn một tích, một phép tính dưới dạng một lũy thừa

Phương pháp giải: Áp dụng công thức:  an = a.a…..a (n thừa số a) (n khác 0)

2. Dạng 2: Nhân và chia hai lũy thừa cùng cơ số

Phương pháp giải:

Bước 1: Xác định cơ số và số mũ.

Bước 2: Áp dụng công thức: am. an = am+n và am : an = am-n (a ≠ 0 ; m ≠ 0, m > n)

3. Dạng 3: So sánh các số viết dưới dạng lũy thừa

Phương pháp giải: Để so sánh các số viết dưới dạng lũy thừa, ta có thể làm theo:

Cách 1: Đưa về cùng cơ số là số tự nhiên, rồi so sánh hai số mũ

Nếu m > n thì am > an

Cách 2: Đưa về cùng số mũ rồi so sánh hai cơ số

Nếu a>b thì am>bm

Cách 3: Tính cụ thể rồi so sánh

Ngoài ra ta còn sử dụng tính chất bắc cầu: Nếu a < b; b < c thì a < c

4. Dạng 4: Tìm số mũ của một lũy thừa trong một đẳng thức

Phương pháp giải:

Bước 1: Đưa về hai luỹ thừa của cùng một cơ số.

Bước 2: Sử dụng tính chất 

Với a≠0; a≠1, nếu am = an thì m = n (a,m,n∈N)

5. Dạng 5: Tìm cơ số của lũy thừa

Phương pháp giải:

Cách 1: Dùng định nghĩa lũy thừa

a.a.....a = an (n thừa số a)Cách 2: Sử dụng tính chất

Với a≠0; a≠1, nếu am = an thì m = n (a,m,n∈N)

III. Các bài toán nâng cao lớp 6 về lũy thừa

1. Bài tập có giải chi tiết

Bài 1: Thực hiện các phép tính sau:

a)     37.275.813

b)    1006.10005.100003

c)     365 : 185

d)    24.55 + 52.53

e)     1254 : 58

f)     81.(27 + 915) : (35 + 332)

Giải:

a) 37.275.813 = 37.(33)5.(34)3 = 37.315.312 = 37+15+12 = 334.

b) Tương tự.

c) 365 : 185 = (36 : 18)5 = 25 = 32.

d) 55 + 52.53 = 24.55 + 55 = 55.(24 + 1) = 55.25 = 55.52 = 57.

e) 1254 : 58 = (53)4 : 58 = 512 : 58 = 512-8 = 54 = 625.

f) 81.(27 + 915) : (35 + 332) = 34.(33 + 330) : [35(1 + 327)]

= 34.33.(1 + 327) : [35.(1 + 327)]

= 37 : 35 = 37-5 = 32 = 9.

Hoặc: 81.(27 + 915) : (35 + 332) = 34.(33 + 330) : (35 + 332)

= 32.(33.32 + 330.32) : (35 + 332)

= 32(35 + 332) : (35 + 332)

= 32 = 9.

Bài 2: Tính giá trị biểu thức (Thu gọn các tổng sau):

a) A = 2 + 22 + 23 + … + 22017

b) B = 1 + 32 + 34 + … + 32018

c) C = – 5 + 52 – 53 + 54 – … – 52017 + 52018

Giải:

a) Ta có: A = 2 + 22 + 23 + … + 22017

2A = 2.( 2 + 22 + 23 + … + 22017)

2A = 22 + 23 + 24 + … + 22018

2A – A = (22 + 23 + 24 + … + 22018) – (2 + 22 + 23 + … + 22017)

A = 22018 – 2

 

b) B = 1 + 32 + 34 + … + 32018

32.B = 32.( 1 + 32 + 34 + … + 32018)

9B = 32 + 34 + 36 + … + 32020

9B – B = (32 + 34 + 36 + … + 32020) – (1 + 32 + 34 + … + 32018)

8B = 32020 – 1

B = (32020 – 1) : 8.

 

c) C = – 5 + 52 – 53 + 54 – … – 52017 + 52018

5C = 5.( – 5 + 52 – 53 + 54 – … – 52017 + 52018)

5C = -52 + 53 – 54 + 55 – … – 52018 + 52019

5C + C = (-52 + 53 – 54 + 55 – … – 52018 + 52019) + (- 5 + 52 – 53 + 54 – … – 52017 + 52018)

6C = 52019 – 5

C = (52019 – 5) : 6

Bài 3: So sánh:

a) 536 và 1124

b) 32n và 23n (n ∈ N*)

c) 523 và 6.522

d) 213 và 216

e) 2115 và 275.498

f) 7245 – 7244 và 7244 – 7243

Giải:

a) 536 = 512 (53)12 = 12512; 1124 = 112.12 = (112)12 = 12112

Mà 12512 > 12112 => 536 > 12112

b) Tương tự

c) Ta có: 523 = 5.522 < 6.522

d) Tương tự.

e) 2115 = (7.3)15 = 715.315

275.498 = (33)5.(72)8 = 315.716 = 7.315.715 > 315.715 = 2115

=> 275.498 > 2115.

f) 7245 – 7244 = 7244.(72 – 1) = 7244.71

7244 – 7243 = 7243.(72 – 1) = 7243.71

Mà 7243.71 < 7244.71 nên suy ra: 7244 – 7243 < 7245 – 7244

Bài 4: Tìm số tự nhiên x, biết rằng:

a) 1 + 3 + 5 + … + x = 1600 (x là số tự nhiên lẻ).

Tự giải.

b) 2x + 2x + 3 = 144

Giải:

Ta có: 2x + 2x + 3 = 144

=> 2x + 2x.23 = 144

=> 2x.(1 + 8) = 144

=> 2x.9 = 144

=> 2x = 144 : 9 = 16 = 24

=> x = 4.

c) (x – 5)2016 = (x – 5)2018

=> (x – 5)2018 – (x – 5)2016 = 0

=> (x – 5)2016.[(x – 5)2 – 1] = 0

=>   x – 5 = 0 hoặc x – 5 = 1 hoặc x – 5 = -1

=>  x =  5 hoặc x = 6 hoặc x = 4 (Thỏa mãn x ∈ N).

Đ/s: x ∈ {4; 5; 6}.

d)     (2x + 1)3 = 9.81

Tự trình bày.

Bài 5: Tìm tập hợp các số tự nhiên x, biết rằng lũy thừa 52x – 1 thỏa mãn điều kiện:

100 < 52x – 1 < 56.

Giải:

Ta có: 100 < 52x – 1 < 56

=> 52 < 100 < 52x-1 < 56

=> 2 < 2x – 1 < 6

=> 2 + 1 < 2x < 6 + 1

=> 3 < 2x < 7

Vì x ∈ N nên suy ra: x ∈ {2; 3} là thỏa mãn.

Bài 6:Thực hiện các phép tính sau bằng cách hợp lý.

a) (217 + 172).(915 – 315).(24 – 42)

b) (82017 – 82015) : (82104.8)

c) (13 + 23 + 34 + 45).(13 + 23 + 33 + 43).(38 – 812)

d) (28 + 83) : (25.23)

Giải:

a) (217 + 172).(915 – 315).(24 – 42) = (217 + 172).(915 – 315).(16 - 16) = 0

b) (82017 – 82015) : (82104.8) = 82015.(82- 1) : 82015 = 64 – 1 = 63

c) (13 + 23 + 34 + 45).(13 + 23 + 33 + 43).(38 – 812) = (13 + 23 + 34 + 45).(13 + 23 + 33 + 43).(38 - 38) = 0

d) (28 + 83) : (25.23) = (28+ 29) : 28 = 28 : 28 + 29 : 28 = 1 + 2 = 3

2. Bài tập lũy thừa nâng cao tự luyện (PDF)

 

Embed Google Docs with Download Options Tải về Tải về DOCXTải về PDF

 

Từ khóa » Bài Toán Lũy Thừa Lớp 6