Các Bước Tính Ma Trận Bậc Thang Ppt - 123doc
Có thể bạn quan tâm
Ví dụ: Đưa ma trận sau về dạng bậc thang:... Ta có: Bước 2:Lần lượt thực hiện các phép biến đổi:.. Nếu để nguyên như thế thì các bước sau chắc chắn xuất hiện phân số.. Ta có: Bước 4: Lần
Trang 1Bước 1: Kiểm tra ?
1.1 Nếu và , ta đổi chỗ vị trí hàng 1 và hàng i
1.2 Nếu và , ta đổi chỗ vị trí hàng 1 và hàng k để cho bước 2 đơn giản
1.3 Nếu tất cả các phần tử của cột 1 bằng 0 thì cột 1 coi như bước 2 đã hoàn thành, chuyển sang bước 3
Bước 2: Khử tất cả các phần tử của cột 1 dưới bằng phép biến đổi:
Khi đó, ma trận sẽ có dạng:
Chuẩn hóa cột 1 để đưa về dạng bậc thang dòng
Bước 3: Kiểm tra ?
1.1 Nếu và , ta đổi chỗ vị trí hàng 2 và hàng j
1.2 Nếu và , ta đổi chỗ vị trí hàng 2 và hàng k để cho bước 4 đơn giản
1.3 Nếu tất cả các phần tử của cột 2 (từ trở xuống) bằng 0 thì cột 2 đã được chuẩn hóa, coi như bước 4 đã hoàn thành
Bước 4: Khử tất cả các phần tử của cột 2 ở dưới bằng phép biến đổi:
Ma trận đưa về dạng:
Chuẩn hóa cột 2
Tiếp tục quá trình trên cho phần tử , phần tử ở dòng 4, cột 4; … ta sẽ đưa ma trận về dạng bậc thang dòng
Ví dụ: Đưa ma trận sau về dạng bậc thang:
Trang 2Bước 1: Phần tử Tuy nhiên nên ta hoán đổi vị trí dòng 1 và dòng 4 Ta có:
Bước 2:Lần lượt thực hiện các phép biến đổi: Ta có:
Bước 3: Xét giá trị ở dòng 2, cột 2 Ta thấy là 1 số khá lớn Nếu để nguyên như thế thì các bước sau chắc chắn xuất hiện phân số Điều này làm cho bài toán rối rắm hơn
Nhận thấy: 20 và 52 đều cho hết cho 4 nên ta đổi chỗ dòng 2 và dòng 4 Ta có:
Bước 4: Lần lượt thực hiện các phép biến đổi: Ta có:
Tiếp theo, ta chia dòng 3 cho 32 và chia dòng 4 cho 14 Ta có:
Bước 5: Xét giá trị ở dòng 3, cột 3.
Nhận thấy các phần tử nên cột 3 đã được chuẩn hóa
Do đó, ta chuyển sang chuẩn hóa cột 4 bằng cách xét phần tử
Do , và nên ta cột 4 đã được chuẩn hóa Ta chuyển sang cột 5 Lấy dòng 4 trừ dòng 3
Ta có:
Sau bước này ta đã có được ma trận bậc thang dòng Vậy ta đã có dạng bậc thang
Để chuyển về ma trận bậc thang chính tắc Ta tiếp tục thực hiện các phép biến đổi trên cột như sau:
Bước 6: Bằng cách thực hiện phép biến đổi: , , ,
Ta có:
Bước 7: Đổi chỗ cột 2 và cột 3 Ta có:
Bước 9: Do xuất hiện cột không nên ta cần đổi chỗ cột 3 và cột 5 Mục đích để cột không nằm ở vị
trí cuối cùng Ta có:
Vậy ta có dạng ma trận bậc thang chính tắc:
Từ khóa » Tính Ma Trận Bậc Thang
-
Thuật Toán Tìm Ma Trận Bậc Thang | Maths 4 Physics & More...
-
Ma Trận Bậc Thang (Echelon Matrix) | Maths 4 Physics & More...
-
Thuật Toán Tìm Ma Trận Bậc Thang | Toán Cho Vật Lý
-
Đại Số Tuyến Tính Các Ví Dụ - Mathway
-
Dùng Phép BĐSCTD đưa Ma Trận Về Dạng Bậc Thang (STU) - YouTube
-
DSTT P2-2 Biến đổi Một Ma Trận Về Dạng Bậc Thang - YouTube
-
Ứng Dụng Toán Online - Theza2
-
Dạng Hàng Bậc Thang – Wikipedia Tiếng Việt
-
Các Bước Tính Ma Trận Bậc Thang - TaiLieu.VN
-
Cách đưa Ma Trận Về Dạng Bậc Thang Bằng Máy Tính
-
Cách Bấm Máy Tính Ma Trận Bậc Thang
-
Cách Bấm Máy Tính Ma Trận Bậc Thang
-
2.5. Hạng Của Ma Trận | Môn: Đại Số Tuyến Tính - ELEARNING
-
Tinh Toán Ma Trận