CÁC CÁCH CM HÌNH HỌC 8 - Tài Liệu Text - 123doc
Có thể bạn quan tâm
- Trang chủ >>
- Giáo án - Bài giảng >>
- Toán học
Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (64.65 KB, 5 trang )
Phương Pháp chứng minh hình học thường gặp trong trong hình học 8MỘT SỐ CÁCH CHỨNG MINH THƯỜNG GẶP TRONGHÌNH HỌC LỚP 8I. CHỨNG MINH HAI GÓC BẰNG NHAU:1/ Sử dụng quan hệ bắc cầu:Chứng minh chúng bằng nhau ( hoặc cùng bù,cùng phụ) với một góc thứ haiVí dụ: 2/ Sử dụng tính chất của tia phân giácTia phân giác của một góc chia góc đó thành hai phần bằng nhau4/ Sử dụng tính chất của tam giác cânTam giác cân hai góc ở đáy bằng nhau4/ Sử dụng tính chất của đường thẳng song songHai đường thẳng song song tạo với một các tuyến- Hai góc so le trong bằng nhau.- Các góc đồng vò bằng nhau5/ Sử dụng tính chất của góc đối đỉnhHai góc đối dỉnh thì bằng nhau6/ Sử dụng tính chất góc có cạnh song song hoặc vuông góchai góc có cạnh tương ứng song song (hoặc vuông góc ) thì bằng nhaunếu cùng nhọn hoặc cùng tù.7/ Sử dụng tính chất của các tứ giác đặc biệtTrong hình thang cân hai góc kề một đáy thì bằng nhauTrong hình bình hành (hình chữ nhật,hình thoi ,hình vuông) hai góc đối bằng nhau.Sử dụng tính chất hai tam giác bằng nhau:Hai tam giác bằng nhau thì các góc tương ứng bằng nhau9/ Sử dụng tính chất của hai tam giác đồng dạng :Hai góc đồng dạng thì các góc tương ứng bằng nhauII. CHỨNG MINH HAI ĐOẠN THẲNG BẰNG NHAU:Để chứng minh hai đoạn thẳng bằng nhau ta có thể sử dụng một trong các cách sau đây1/ Sử dụng quan hệ bắc cầuChứng minh chúng bằng một đoạn thẳng thứ ba2/ Sử dụng tính chất của tam giác cânTrong tam giác cân; hai cạnh bên bằng nhauTrong tam giác đều ba cạnh bằng nhau3/ Sử dụng tính chất của tam giác vuôngLương Văn Ngọc – Giáo viên Trường THCS Nguyễn Du - : 01667061277Phương Pháp chứng minh hình học thường gặp trong trong hình học 8Trong tam giác vuông đường trung tuyến ứng với cạnh huyền thì bằng một nửa cạnh huyền.4/ Sử dụng tính chất của đường trung trực của đoạn thẳngMột điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai đầu mút của đoạn thẳng5/ Sử dụng tính chất của tia phân giác của một gócMột điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó6/ Sử dụng tính chất đường song song cách đềuNhiều đường thẳng song song cách đều đònh ra trên một cát tuyến bất kì những đoạn thẳng bằng nhau.8/ Sử dụng các tính chất của tứ giác đặc biệt- Trong hình thang cân thì:Hai cạnh bên bằng nhauHai đường chéo bằng nhauTrong hình bình hành (hình chữ nhật,hình thoi,hình vuông):Các cạnh đối bằng nhau.Các đường chéo cắt nhau tại trung điểm của mỗi đường.Trong hình chữ nhật, hình vuông thì hai đường chéo bằng nhau.9/ Sử dụng tính chất đối xứng:Hai đoạn thẳng đối xứng nhau qua một điểm thì bằng nhau.Hai điểm đối xứng với nhau qua một đường thẳng thì bằng nhau.III. CHỨNG MINH CÁC ĐƯỜNG THẲNG SONG SONGĐể chứng minh hai đường thẳng song song thì ta có thể sử dụng một trong các cách sau:1/ Sử dụng điều kiện song song:Khi hai đường thẳng tạo với một cát tuyến:- Hai góc so le trong ( so le ngoài ) bằng nhau; hoặc- Hai góc đồng vò bằng nhau; hoặc- Hai góc trong cùng phía bù nhauThì hai đường thẳng song song với nhau2/ sử dụng liên hệ với đường thẳng thứ baHai đường thằng cùng song song với đường thẳng thứ ba thì song song với nhauHai đường thẳng cùng vuông góc với một đường thẳng thứ thứ ba thì song song với nhau3/ Sử dụng tính chất của đường trung bìnhĐường thẳng đi qua trung điểm của hai cạnh của tam giác thì song song với cạnh còn lạiĐường thẳng đi qua trung điểm của hai cạnh bên của hình thang thì song song với cạnh đáy.Lương Văn Ngọc – Giáo viên Trường THCS Nguyễn Du - : 01667061277Phương Pháp chứng minh hình học thường gặp trong trong hình học 84/ Sử dụng tính chất của tứ giác đặc biệt:Trong hình thang hai cạnh đáy song song với nhau.Trong hình bình hành (hình chữ nhật;hình thoi,hình vuông) thì các cạnh đối song song5/ Sử dụng đònh lí đảo của đònh lí Ta let- nếu một đường thẳng đònh ra trên hai cạnh của một tam giác những đoạn thẳng tương ứng tỉ lệ thì nó song song với cạnh còn lại- ba dường thẳng trong đó có hai đường thẳng song, đònh ra trên hai cát tuyến bất kì những đoạn thẳng tương ứng tỉ lệ thì ba đường thẳng ấy song song với nhau.6/ Sử dụng tính chất đối xứng:Hai đường thẳng đối xứng với nhau qua một điểm thì song song với nhau7/ Sử dụng Tiên đề Ơ Clit và phương pháp chứng minh phản chứng:- Để chứng minh hai đường thẳng a và b song song với nhau ta giả sử chúng cắt nhau tại một điểm A và lí luận để đi đến một điều vô lí (hoặc trái với giả thiết)- Ta cũng có thể làm như sau: qua điểm A thuộc a; kẽ đường thẳng a’//b; sau đó chứng minh a’ trùng với aIV. CHỨNG MINH HAI ĐƯỜNG THẲNG VUÔNG GÓC* Để chứng minh hai đường thẳng vuông góc với nhau; ta có thể sử dụng một trong các cách sau đây1/ Sử dụng tính chất của các đường phân gíacCác tia phân giác của của hai góc kề bù thì vuông góc với nhau2/ Sử dụng tính chất của tam giác cânTrong tam giác cân thì đường trung tuyến ( hoặc phân giác ) kẽ từ đỉnh cũng là đường cao ( vuông góc với đáy)3/ Sử dụng tính chất đồng quy của ba đường cao của tam giácTrong một tam giác ba đường cao đồng quy tại trực tâm do đó đường thằng đi qua trực tâm thì vuông góc với cạnh đối diện với đỉnh ấy.4/ Sử dụng tính chất của tứ giác đặc biệt:Trong hình thoi ( hình vuông ) hai đường chéo vuông góc với nhau.5. Sử dụng tính chất của tam giác vuôngĐể chứng minh hai đøng thẳng vuông góc với nhau,ta chứng minh chúng là hai cạnh góc vuôngV. CHỨNG MINH CÁC ĐIỂM THẲNG HÀNG:Để chứng minh ba ba đểm chẳng hạn A;B;C theo thứ tự đó thẳng hàng trên cùng (nằm một đường thẳng); ta có thể sử dụng một trong các cách sau:1/ Sử dụng điều kiện điểm nằm giữa hai điểm:A;B;C thẳng hàng khi và chỉ khi AC = AB + BC2/ Sử dụng Tiên đề Ơ clit:Ta chỉ cần chứng minh AB và AC cùng song song với một đường thẳng nào đó3/ Sử dụng tính chất của hai góc kề bùLương Văn Ngọc – Giáo viên Trường THCS Nguyễn Du - : 01667061277Phương Pháp chứng minh hình học thường gặp trong trong hình học 8Cần chúng minh ·0180ABC =4/ Sử dụng các đường thẳng đặc biệt:cần chứng minh A,B,C cùng nằm trên một đường thẳng nào đó; chẳng hạn cùng thuộc đường trung trực của đoạn thẳng; tức là cùng cách đều hai mút của đoạn thẳng ấy, hoặc cùng thuộc tia phân giác của một góc, tức là cùng cách đều hai cạnh của góc.VI. CHỨNG MINH ĐƯỜNG THẲNG ĐỒNG QUY:Để chứng minh ba đường thẳng đồng quy, ta có thể sử dụng một trong các cách sau:1/ Để chứng minh một đường thẳng đi qua giao điểm của hai đường thẳng kia:trong trường hợp này ta thường đưa bài toán về việc chứng các điểm thằng hàng.2/ Sử dụng tính chất các đường thằng đồng quy trong tam giáctrong tam giác thì ba đường trung tuyến đồng quy tại trọng tâm, ba đường cao đồng quy tại trực tâm, ba đừơng phân giác đồng quy tại một điểm, ba đường trung trực đồng quy tại một điểm.Do vậy để chứng minh ba đường thẳng đồng quy ta cần chứng minh chúng là các trung tuyến, các đường cao các đường phân giác hay các đường trung trực của tam giác nào đó.3/ Sử dụng đònh lí đảo của đònh lí Ta let mở rộng:nhiều đường thẳng đònh ra trên hai đường thẳng song song các đoạn thẳng tương ứng tỉ lệ thì chúng đồng quy tại một điểm.VII. CHỨNG MINH MỘT SỐ HÌNH1/ Chứng minh tam giác cân:- Chứng minh tam giác đó có hai góc bằng nhau.- Chứng minh tam gáic đó cạnh bằng nhau.- Chứng minh tam giác đó hai trong ba đường trung tuyến, phân giác, đường cao, trung trực ứng với một cạnh là trùng nhau.2/ Chứng minh tam giác đều:để chứng minh một tam giác đều, ta có thể sử dụng một trong các cách sau:- Là một tam giác có một góc 600- Là tam giác có ba cạnh bằng nhau.- Là tam giác có hai góc bằng 6003/ Chứng minh tam giác vuôngđể chứng minh tam giác vuông, ta có thể sử dụng một trong các cách sau:- Chứng có tổng hai góc bằng 900- Chứng minh có đường trung tuyến bằng nửa cạnh tương ứng.- Sử dụng đònh lí đảo của đònh lí Pi ta goµ2 2 2 0: 90ABC AB AC BC A+ = ⇒ =V4/ Chứng minh hình thang cân:để chứng minh hình thang cân, ta có thể sử dụng một trong các cách sau:- Chứng minh hình thang có hai góc kề một đáy là bằng nhau.Lương Văn Ngọc – Giáo viên Trường THCS Nguyễn Du - : 01667061277Phương Pháp chứng minh hình học thường gặp trong trong hình học 8- Chứng minh hình thang có hai đường chéo bằng nhau.6/ Chứng minh hình bình hành:7/ Chứng minh hình chữ nhật8/ chứng minh hình thoi9/chứng minh hình vuôngVIII. CHỨNG MINH MỘT VÀI HỆ THỨC1/ Chứng minh các đẳng thức bậc nhất đối với các đoạn thẳng học các góc ( chẳng hạn: AB + CD = EF; ···ABC EPF GHK+ =)Ta đưa về việc chứng minh các đoạn thẳng ( hoặc các góc ) bằng nhau2/ Chứng minh các đẳng thức có chứa bình phương của các đoạn thẳng:Trong trường hợp này nên sử dụng các tam giác vuông để áp dụng đònh lí Pi ta go.3/ Chứng minh các đẳng thức dạng tích hoặc tỉ số:chẳng hạn AB.CD = A’B’. C’D’Nên sử dụng đònh lí Ta lét hoặc các trường hợp đồng dạng của hai tam giác 4/ Chứng minh các bất đẳng thức giữa các đoạn thẳng hoặc các góc:Ta dựa vào các bất đẳng thức tam giác và các đònh lí liên hệ giữa các cạnh và các góc trong tam giác:- Trong tam giác, mỗi cạnh nhỏ hơn tổng và lớn hơn hiệu hai của hai cạnh còn lại.- Trong một tam giác vuông thì cạnh huyền lớn hơn hai cạnh góc vuông.- Nếu từ một điểm ta kẽ đường thẳng không chứa điểm đó thì:+ Đoạn vuông góc là đoạn ngắn nhất.+ đường xiên nào lớn hơn thì có hình chiếu lớn hơn và ngược lại.- Góc ngoài của tam giác thì bằng tổng hai góc tong không kề với nó.Góc ngoài của tam giác thì lớn hơn góc trong không kề với với nó. - trong một tam giác đối diện với góc lớn hơn là cạnh lớn hơn và ngược lại. Lương Văn Ngọc – Giáo viên Trường THCS Nguyễn Du - : 01667061277
Tài liệu liên quan
- CÁC CÁCH CM HÌNH HỌC 8
- 5
- 13
- 456
- bài giảng hình học 8 chương 3 bài 8 các trường hợp đồng dạng của tam giác vuông
- 18
- 821
- 1
- tính khoảng cách trong hình học không gian (8)
- 1
- 846
- 9
- Hình học 8 - Tiết 48: Các trường hợp đồng dạng của tam giác vuông
- 12
- 448
- 0
- BỒI DƯỠNG CHO HỌC SINH THAO TÁC PHÂN TÍCH – TỔNG HỢP KHI GIẢI CÁC BÀI TOÁN HÌNH HỌC KHÔNG GIAN BẰNG CÁCH SỬ DỤNG SƠ ĐỒ TƯ DUY
- 15
- 905
- 6
- CÁC BÀI TOÁN VỀ KHOẢNG CÁCH TRONG HÌNH HỌC KHÔNG GIAN
- 14
- 670
- 0
- Các dạng toán hình học không gian ôn thi THPT QG (Thể tích, góc và khoảng cách)
- 89
- 595
- 1
- skkn PHƯƠNG PHÁP TIẾP cận các bài TOÁN TÍNH KHOẢNG CÁCH TRONG HÌNH học KHÔNG GIAN lớp 12
- 37
- 811
- 0
- Các dạng toán khoảng cách trong hình học không gian
- 70
- 358
- 0
- Các dạng toán khoảng cách trong hình học không gian trần đình cư
- 70
- 322
- 0
Tài liệu bạn tìm kiếm đã sẵn sàng tải về
(43.5 KB - 5 trang) - CÁC CÁCH CM HÌNH HỌC 8 Tải bản đầy đủ ngay ×Từ khóa » Cách Tính Chất Hình Học Lớp 8
-
Định Nghĩa, Tính Chất, Dấu Hiệu Nhận Biết Các Hình Học Phẳng Lớp 8
-
Công Thức Hình Học Lớp 8 đầy đủ Cả Năm, Chi Tiết Nhất
-
TỔNG HỢP KIẾN THỨC CƠ BẢN HÌNH HỌC LỚP 8 - Hocmai
-
Tổng Hợp Kiến Thức Lý Thuyết Hình Học Lớp 8 (Ngắn Gọn Nhất)
-
Định Nghĩa, Tính Chất, Dấu Hiệu Nhận Biết Các Hình Học Phẳng Lớp 8
-
Tổng Hợp Công Thức Toán Học Lớp 8 Phần Hình Học
-
Lý Thuyết Tứ Giác Cần Ghi Nhớ - Toán Lớp 8 - Trường Quốc Học
-
✓ Công Thức Toán Lớp 8 - Gia Sư Tâm Tài Đức
-
Công Thức Hình Học Không Gian Lớp 8 - Học Toán 123
-
Tổng Hợp Lý Thuyết Chương 1 Phần Hình Học: Tứ Giác | Giải Toán 8
-
MÔN TOÁN - LỚP 8 | HÌNH HỌC: TÍNH CHẤT ĐƯỜNG PHÂN GIÁC ...
-
Cách Chứng Minh Hình Học Lớp 8 - Hàng Hiệu
-
Toán Lớp 8 Cơ Bản - Hình Học - 03. Ôn Tập Tính Góml
-
Lý Thuyết Hình Chữ Nhật | SGK Toán Lớp 8