Các Dạng Bài Tập Về Hàm Số Mũ, Lũy Thừa, Lôgarit

Các dạng bài tập về hàm số mũ, lũy thừa, lôgarit
  • Giảm giá 50% sách VietJack đánh giá năng lực các trường trên Shopee Mall
Trang trước Trang sau

Bài viết Các dạng bài tập về hàm số mũ, lũy thừa, lôgarit với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Các dạng bài tập về hàm số mũ, lũy thừa, lôgarit.

  • Cách giải bài tập về hàm số mũ, lũy thừa, lôgarit
  • Bài tập vận dụng về hàm số mũ, lũy thừa, lôgarit
  • Bài tập tự luyện về hàm số mũ, lũy thừa, lôgarit

Các dạng bài tập về hàm số mũ, lũy thừa, lôgarit

Bài giảng: Các bài toán thực tế - Ứng dụng hàm số mũ và logarit - Cô Nguyễn Phương Anh (Giáo viên VietJack)

A. Phương pháp giải & Ví dụ

Quảng cáo

1. Hàm lũy thừa:

1.1. Định nghĩa: Hàm số y = xa với α ∈ R được gọi là hàm số lũy thừa.

1.2. Tập xác định: Tập xác định của hàm số y = xα là:

• D = R nếu α là số nguyên dương.

• D = R\{0} với α nguyên âm hoặc bằng 0.

• D = (0;+∞) với α không nguyên.

1.3. Đạo hàm: Hàm số y = xα, (α ∈ R) có đạo hàm với mọi x > 0 và (xα)' = α.x(α-1).

1.4. Tính chất của hàm số lũy thừa trên khoảng (0;+∞).

y = xα, α > 0 y = xα, α < 0
A. Tập khảo sát: (0; +∞) A. Tập khảo sát: (0; +∞)

B. Sự biến thiên:

+ y'=αx(α-1) > 0,∀ x > 0.

+ Giới hạn đặc biệt:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

+ Tiệm cận: không có

B. Sự biến thiên:

+ y'=αx(α-1) < 0, ∀ x > 0.

+ Giới hạn đặc biệt:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

+ Tiệm cận:

- Trục Ox là tiệm cận ngang.

- Trục Oy là tiệm cận đứng.

C. Bảng biến thiên:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

C. Bảng biến thiên:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

D. Đồ thị:

Đồ thị của hàm số lũy thừa y = xα luôn đi qua điểm I(1;1).

Lưu ý: Khi khảo sát hàm số lũy thừa với số mũ cụ thể, ta phải xét hàm số đó trên toàn bộ tập xác định của nó. Chẳng hạn: y = x3, y = x-2, y = xπ.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Quảng cáo

2. Hàm số mũ: y = ax,(a > 0, a ≠ 1).

2.1. Tập xác định: D = R

2.2. Tập giá trị: T = (0,+∞), nghĩa là khi giải phương trình mũ mà đặt t = af(x) thì t > 0.

2.3. Tính đơn điệu:

+ Khi a > 1 thì hàm số y = ax đồng biến, khi đó ta luôn có: af(x) > ag(x) ⇔ f(x) > g(x).

+ Khi 0 < a < 1 thì hàm số y = ax nghịch biến, khi đó ta luôn có: af(x) > ag(x) ⇔ f(x) < g(x).

2.4. Đạo hàm:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

2.5. Đồ thị: Nhận trục hoành làm đường tiệm cận ngang.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

3. Hàm số logarit: y = logax,(a > 0,a ≠ 1)

3.1. Tập xác định: D = (0, +∞).

3.2. Tập giá trị: T = R, nghĩa là khi giải phương trình logarit mà đặt t = logax thì t không có điều kiện.

3.3. Tính đơn điệu:

+ Khi a > 1 thì y=logax đồng biến trên D, khi đó nếu: logaf(x) > logag(x) ⇔ f(x) > g(x).

+ Khi 0 < a < 1 thì y=logax nghịch biến trên D, khi đó nếu logaf(x) > logag(x) ⇔ f(x) < g(x).

3.4. Đạo hàm:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

3.5. Đồ thị: Nhận trục tung làm đường tiệm cận đứng.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ví dụ minh họa

Bài 1: Tìm khoảng đồng biến, nghịch biến của hàm số

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Lời giải:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ta có bảng biến thiên

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy hàm số đồng biến trên khoảng (-∞; 1)

Hàm số nghịch biến trên khoảng (1; +∞)

Quảng cáo

Bài 2: Tìm cực trị của hàm số y = log2(x3-4x)

Lời giải:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vẽ bảng biến thiên, khi đó hàm số có 1 cực trị

Bài 3: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = log2(x2-2x+3) trên đoạn [-1;2]

Lời giải:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

B. Bài tập vận dụng

Bài 1: Xét tính đồng biến, nghịch biến của hàm số y = x-ln(1+x)

Lời giải:

TXĐ: D=(-1;+∞).

Đạo hàm Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bảng biến thiên

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Từ bảng biến thiên, ta thấy hàm số nghịch biến trên (-1;0) và đồng biến trên (0;+∞).

Bài 2: Tính giá trị cực tiểu yCT của hàm số y = xex.

Lời giải:

Hàm số xác định và liên tục trên R.

Ta có y' = ex + xex = ex → y'=0 ⇔ 1+x=0 ⇔ x = -1.

Bảng biến thiên

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Từ bảng biến thiên, suy ra hàm số có giá trị cực tiểu yCT = y(-1) = -1/e.

Bài 3: Tìm giá trị lớn nhất M của hàm số f(x)=ex3-3x+3 trên đoạn [0;2]

Lời giải:

Hàm số f(x) xác định và liên tục trên đoạn [0;2].

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 4: Tìm tập giá trị T của hàm số f(x)=(lnx)/x với x ∈ [1;e2 ].

Lời giải:

Hàm số f(x) xác định và liên tục trên đoạn [1;e2].

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải Quảng cáo

Bài 5: Cho hàm số y = eax2+bx+c đạt cực trị tại x = 1 và đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng e. Tính giá trị của hàm số tại x=2.

Lời giải:

+ Cắt Oy tại y=e nên c=1.

+ y'=(ax+b) eax2+bx+c . Mà y'(1)=0 ⇔2a+b=0

+ Khi đó y(2) = e4a+2b+c = e.

Bài 6: Xác định giá trị của tham số m để hàm số y = (3x2+2m)5 đạt giá trị lớn nhất bằng 32 trên đoạn [2;3].

Lời giải:

Ta có y' = 30x(3x2+2m)4 ≥ 0, ∀ x ∈ [2;3] ⇒ Hàm số đạt GTLN tại x = 3

⇒ y(3) = 32 ⇔ (27+2m)5 = 32 ⇔ m = -25/2

Bài 7: Tìm tập hợp tất cả các giá trị của tham số thực m để hàm số y = 4x-2x+2-mx+1 đồng biến trên khoảng (-1; 1).

Lời giải:

Ta có y = 4x-2x+2-mx+1 ⇒ y'=4x.ln4-4.2x.ln2-m=(4x-2.2x ).ln4-m

Theo đề y' ≥ 0,∀x ∈ (-1;1) ⇔(4x-2.2x ).ln4-m ≥ 0, ∀ x ∈ (-1;1)

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

C. Bài tập tự luyện

Bài 1. Cho a, b là 2 số thực khác 0 biết 1125a2+4ab=62533a2−10ab. Tính tỉ số ab.

Bài 2. Rút gọn biểu thức P = xxx...x với n dấu căn và x là số thực dương.

Bài 3. Tìm x để biểu thức P(x) = 2x−123+2x−57+1−3x−11 có nghĩa.

Bài 4. Tìm tập hợp các giá trị thực của tham số m để hàm số f(x) = 2x2+mx+232 xác định với mọi x ∈ ℝ.

Bài 5. Tìm tập xác định của hàm số y = −x2+3x+413+2−x.

Bài giảng: Tất tần tật về Lũy thừa - Cô Nguyễn Phương Anh (Giáo viên VietJack)

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:

  • Dạng 1: Lũy thừa: lý thuyết, tính chất, phương pháp giải
  • Trắc nghiệm lũy thừa
  • Dạng 2: Lôgarit: lý thuyết, tính chất, phương pháp giải
  • Trắc nghiệm Lôgarit
  • Dạng 3: Tìm tập xác định của hàm số mũ, lũy thừa, lôgarit
  • Trắc nghiệm tìm tập xác định của hàm số mũ, lũy thừa, lôgarit
  • Trắc nghiệm về hàm số mũ, lũy thừa, lôgarit
  • Dạng 5: Giới hạn, đạo hàm của hàm số mũ, lũy thừa, lôgarit
  • Trắc nghiệm giới hạn, đạo hàm của hàm số mũ, lũy thừa, lôgarit
  • Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí

Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:

  • 30 đề toán, lý hóa, anh, văn 2025 (100-170k/1 cuốn)
  • 30 đề Đánh giá năng lực đại học quốc gia HN 2025 (cho 2k7)
  • 30 đề Đánh giá năng lực đại học quốc gia tp. Hồ Chí Minh 2025 (cho 2k7)

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Giáo án, bài giảng powerpoint Văn, Toán, Lí, Hóa....

4.5 (243)

799,000đs

199,000 VNĐ

1000 Đề thi bản word THPT quốc gia cá trường 2023 Toán, Lí, Hóa....

4.5 (243)

799,000đ

199,000 VNĐ

Đề thi thử DGNL (bản word) các trường 2023

4.5 (243)

799,000đ

199,000 VNĐ

xem tất cả Trang trước Trang sau ham-so-mu-ham-so-luy-thua-ham-so-logarit.jsp Giải bài tập lớp 12 sách mới các môn học
  • Giải Tiếng Anh 12 Global Success
  • Giải sgk Tiếng Anh 12 Smart World
  • Giải sgk Tiếng Anh 12 Friends Global
  • Lớp 12 Kết nối tri thức
  • Soạn văn 12 (hay nhất) - KNTT
  • Soạn văn 12 (ngắn nhất) - KNTT
  • Giải sgk Toán 12 - KNTT
  • Giải sgk Vật Lí 12 - KNTT
  • Giải sgk Hóa học 12 - KNTT
  • Giải sgk Sinh học 12 - KNTT
  • Giải sgk Lịch Sử 12 - KNTT
  • Giải sgk Địa Lí 12 - KNTT
  • Giải sgk Giáo dục KTPL 12 - KNTT
  • Giải sgk Tin học 12 - KNTT
  • Giải sgk Công nghệ 12 - KNTT
  • Giải sgk Hoạt động trải nghiệm 12 - KNTT
  • Giải sgk Giáo dục quốc phòng 12 - KNTT
  • Giải sgk Âm nhạc 12 - KNTT
  • Giải sgk Mĩ thuật 12 - KNTT
  • Lớp 12 Chân trời sáng tạo
  • Soạn văn 12 (hay nhất) - CTST
  • Soạn văn 12 (ngắn nhất) - CTST
  • Giải sgk Toán 12 - CTST
  • Giải sgk Vật Lí 12 - CTST
  • Giải sgk Hóa học 12 - CTST
  • Giải sgk Sinh học 12 - CTST
  • Giải sgk Lịch Sử 12 - CTST
  • Giải sgk Địa Lí 12 - CTST
  • Giải sgk Giáo dục KTPL 12 - CTST
  • Giải sgk Tin học 12 - CTST
  • Giải sgk Hoạt động trải nghiệm 12 - CTST
  • Giải sgk Âm nhạc 12 - CTST
  • Lớp 12 Cánh diều
  • Soạn văn 12 Cánh diều (hay nhất)
  • Soạn văn 12 Cánh diều (ngắn nhất)
  • Giải sgk Toán 12 Cánh diều
  • Giải sgk Vật Lí 12 - Cánh diều
  • Giải sgk Hóa học 12 - Cánh diều
  • Giải sgk Sinh học 12 - Cánh diều
  • Giải sgk Lịch Sử 12 - Cánh diều
  • Giải sgk Địa Lí 12 - Cánh diều
  • Giải sgk Giáo dục KTPL 12 - Cánh diều
  • Giải sgk Tin học 12 - Cánh diều
  • Giải sgk Công nghệ 12 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
  • Giải sgk Giáo dục quốc phòng 12 - Cánh diều
  • Giải sgk Âm nhạc 12 - Cánh diều

Từ khóa » Bài Tập Hàm Số Mũ Lớp 12