Các Dạng Bài Tập Về Sự đồng Biến Nghịch Biến Của Hàm Số Lớp 12

Tailieumoi.vn xin giới thiệu đến các quý thầy cô, các em học sinh đang trong quá trình ôn tập bộ Dạng bài tập Tìm khoảng đồng biến và nghịch biến của hàm số Toán lớp 12, tài liệu bao gồm 7 trang, tuyển chọn Dạng bài tập Tìm khoảng đồng biến và nghịch biến của hàm số đầy đủ lý thuyết, phương pháp giải chi tiết và bài tập có đáp án (có lời giải), giúp các em học sinh có thêm tài liệu tham khảo trong quá trình ôn tập, củng cố kiến thức và chuẩn bị cho kì thi tốt nghiệp THPT môn Toán sắp tới. Chúc các em học sinh ôn tập thật hiệu quả và đạt được kết quả như mong đợi.

Nội dung chính Show
  • Lý thuyết về tính đơn điệu của hàm số
  • 1. Định nghĩa đồng biến, nghịch biến
  • 2. Định lí
  • 3. Định lí mở rộng
  • 4. Qui tắc xét tính đơn điệu của hàm số
  • Phân dạng bài tập về tính đơn điệu của hàm số
  • Dạng 1: Tìm khoảng đồng biến – nghịch biến của hàm số bất kì
  • Dạng 2. Đọc khoảng đơn điệu của hàm số bằng hình ảnh đồ thị cho trước
  • Dạng 3. Tìm m để hàm số đơn điệu trên từng khoảng xác định
  • Dạng 4: Tìm m để hàm số y = ax3 + bx2 + cx + d đơn điệu trên ℝ
  • Dạng 5: Tìm m để hàm số lượng giác đơn điệu trên khoảng cho trước.
  • Dạng 6. Tìm khoảng đơn điệu khi biết đồ thị hàm f’(x)
  • Dạng 7. Biện luận đơn điệu của hàm đa thức trên khoảng con của tập ℝ
  • Tài liệu tính đơn điệu của hàm số
  • 1. Thông tin tài liệu
  • 2. Mục lục
  • 3. Xem tài liệu
  • Video liên quan

Mời các quý thầy cô và các em học sinh cùng tham khảo và tải về chi tiết tài liệu dưới đây:

Xem thêm

Trang 1

Trang 2

Trang 3

Trang 4

Trang 5

Trang 6

Trang 7

Cập nhật lúc: 21:29 18-08-2016 Mục tin: LỚP 12

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Tìm hiểu lý thuyết tính đơn điệu của hàm số, dạng bài tìm khoảng đơn điệu dựa vào hàm số – đồ thị và các dạng biện luận m để hàm đơn điệu. Các định nghĩa, định lý về tính đơn điệu của hàm số trong bài viết này sẽ giúp các bạn học sinh nắm chắc hơn trong việc khảo sát hàm số cũng như các dạng toán trong phần giải tích toán 12. Là nền tảng kiến thức đóng vai trò quan trọng trong các kì thì trên trường cũng như ôn thi THPT quốc gia.

Lý thuyết về tính đơn điệu của hàm số

Tính đơn điệu của hàm số là cách gọi chung cho tính đồng biến (tăng) và tính nghịch biến (giảm). Thông thường để xác định tính chất đơn điệu của hàm số ta thường tìm đạo hàm của nó. Xét trong khoảng bất kì, nếu đạo hàm dương trong khoảng nào thì hàm số đồng biến trong khoảng đó và ngược lại với đạo hàm âm.

1. Định nghĩa đồng biến, nghịch biến

Cho hàm số y = f(x) xác định trên K , trong đó K là một khoảng, đoạn hoặc nữa khoảng.

a) Hàm số y = f(x) đồng biến trên K nếu mọi x₁, x₂ ∊ K, x₁ < x₂ ⇒ f(x₁) < f(x₂).

b) Hàm số y = f(x) nghịch biến trên K nếu mọi x₁, x₂ ∊ K, x₁ < x₂ ⇒ f(x₁) > f(x₂).

2. Định lí

Cho hàm số y = f(x) có đạo hàm trên K .

a) Nếu f’(x) > 0 với mọi x thuộc K thì hàm số f(x) đồng biến trên K .

b) Nếu f’(x) < 0 với mọi x thuộc K thì hàm số f(x) nghịch biến trên K .

c) Nếu f’(x) = 0 với mọi x thuộc K thì hàm số f(x) không đổi trên K .

Chú ý: Nếu hàm số f liên tục trên đoạn [a;b] và có đạo hàm f’(x) > 0 trên khoảng (a;b) thì hàm số f đồng biến trên đoạn [a;b]. Nếu hàm số f liên tục trên đoạn [a;b] và có đạo hàm f’(x) < 0 trên khoảng (a;b) thì hàm số f nghịch biến trên đoạn [a;b].

3. Định lí mở rộng

Cho hàm số y = f(x) có đạo hàm trên K.

a) Nếu f’(x) ≥ 0 với mọi x thuộc K và f’(x) = 0 xảy ra tại một số hữu hạn điểm của K thì hàm số f(x) đồng biến trên K.

b) Nếu f’(x) ≤ 0 với mọi x thuộc K và f’(x) = 0 xảy ra tại một số hữu hạn điểm của K thì hàm số f(x) nghịch biến trên K.

4. Qui tắc xét tính đơn điệu của hàm số

  • Bước 1: Tìm tập xác định.
  • Bước 2: Tính đạo hàm f’(x). Tìm các điểm xᵢ (i = 1, 2, …,n) mà tại đó đạo hàm bằng 0 hoặc không xác định.
  • Bước 3: Sắp xếp các điểm xᵢ theo thứ tự tăng dần và lập bảng biến thiên.
  • Bước 4: Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.
Hàm số đồng biến và hàm số nghịch biến gọi chung là tính đơn điệu của hàm số.

Phân dạng bài tập về tính đơn điệu của hàm số

Tính đơn điệu của hàm số là một chủ đề rộng. Trong chủ đề này, các đề thi có thể khai thác được những câu hỏi mức vận dụng về tìm khoảng đồng biến nghịch biến của hàm số bất kì và cũng có thể khai thác được các câu hỏi khó về biện luận m thỏa mãn điều kiện cho trước. Dưới đây, chúng ta cùng tìm hiểu 7 dạng toán phổ biến nhất trong chuyên đề này. Nhưng trước hết bạn cần phải hiểu bản chất về tính đồng biến nghịch biến của hàm số.

Dạng 1: Tìm khoảng đồng biến – nghịch biến của hàm số bất kì

Phương pháp giải

Cho hàm số y = f(x)

+)  f’(x) > 0 ở đâu thì hàm số đồng biến ở đấy.

+)  f’(x) < 0 ở đâu thì hàm số nghịch biến ở đấy.

Quy tắc:

+) Tính f’(x), giải phương trình f’(x) = 0 tìm nghiệm.

+) Lập bảng xét dấu f’(x).

+) Dựa vào bảng xét dấu và kết luận.

a. y = x³ – 3x² + 2

b. y = -x³ + 3x² -3x + 2

c. y = x³ + 2x

Hướng dẫn giải:

a. y = x³ – 3x² + 2.

Hàm số xác định với mọi x ∊ R

Ta có: y’ = 3x² – 6x, cho y’ = 0 ⇒ 3x² – 6x = 0 ⇔ x = 0, x = 2

Bảng biến thiên:

Dựa vào bảng biến thiên suy ra:

– Hàm số đồng biến trên các khoảng (-∞;0) và (2;+∞).

– Hàm số nghịch biến trên khoảng (0;2)

Chú ý: Không được kết luận: “Hàm số đồng biến trên khoảng (-∞;0) ∪ (2;+∞)”

b. y = -x³ + 3x² -3x + 2

Hàm số xác định với mọi x ∊ R

Ta có: y’ = -3x² + 6x – 3, cho y’ = 0 ⇒ -3x² + 6x – 3 = 0 ⇔ x = 1 (nghiệm kép)

⇒ y’ ≤ 0, ∀ x ∊ R ⇒ hàm số luôn nghịch biến trên tập xác định R

c. y = x³ + 2x

Hàm số xác định với mọi x ∊ R

y’ = 3x² + 2, cho y’ = 0 ⇒ 3x² + 2 = 0 (vô nghiệm)

⇒ y’ > 0, ∀ x ∊ R ⇒ hàm số luôn đồng biến trên tập xác định R

Ví dụ 2: Xét tính đơn điệu của mỗi hàm số sau:

a. y = x⁴ – 2x² + 1

b. y = -x⁴ + x² – 2

c. y= ¼ x⁴ + 2x² – 1

Hướng dẫn giải:

a. y = x⁴ – 2x² + 1

Hàm số xác định với mọi x ∊ R

y’ = 4x³ – 4x = 4x (x² – 1), cho y’ = 0 ⇒ 4x (x² – 1) = 0 ⇔ x = 0 hoặc x = -1 hoặc x = 1

Bảng biến thiên:

Dựa vào bảng biến thiên suy ra:

  • Hàm số đồng biến trên các khoảng (-1;0) và (1;+∞)
  • Hàm số nghịch biến trên các khoảng (-∞;-1) và (0;1)

b. y = -x⁴ + x² – 2

Hàm số xác định với mọi x ∊ R

y’ = -4x³ + 2x = 2x (-2x² + 1)

Cho y’ = 0 ⇒ 2x (-2x² + 1) = 0

⇔ x = 0 hoặc

Bảng biến thiên:

Dựa vào bảng biến thiên suy ra:

– Hàm số đồng biến trên các khoảng:

– Hàm số nghịch biến trên các khoảng:

c. y= ¼ x⁴ + 2x² – 1

Hàm số xác định với mọi x ∊ R

y’ = x³ + 4x = x (x² + 4), cho y’ = 0 ⇒ x (x² + 4) = 0 ⇔ x = 0 (do x² + 4 vô nghiệm)

Bảng biến thiên:

Từ bảng biến thiên suy ra: Hàm số đồng biến trên khoảng (0; +∞) và nghịch biến trên các khoảng (-∞; 0).

Dạng 2. Đọc khoảng đơn điệu của hàm số bằng hình ảnh đồ thị cho trước

Phương pháp giải

Nếu đề bài cho đồ thị y = f(x), ta chỉ việc nhìn các khoảng mà đồ thị “đi lên” hoặc “đi xuống”.

  • Khoảng mà đồ thị “đi lên”: hàm đồng biến;
  • Khoảng mà đồ thị “đi xuống”: hàm nghịch biến.

Nếu đề bài cho đồ thị y = f’(x). Ta tiến hành lập bảng biến thiên của hàm y = f(x) theo các bước:

  • Tìm nghiệm của f’(x) = 0 (hoành độ giao điểm với trục hoành);
  • Xét dấu f’(x) (phần trên Ox mang dấu dương; phần dưới Ox mang dấu âm);
  • Lập bảng biến thiên của y = f(x), suy ra kết quả tương ứng.

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

A. (-1;0)

B. (-∞;0)

C. (1;+∞)

D. (0;1)

Lời giải

Chọn D

Dựa vào bảng biến thiên ta có hàm số đã cho nghịch biến trên các khoảng (0;1) và (-∞;-1)

Dạng 3. Tìm m để hàm số đơn điệu trên từng khoảng xác định

Phương pháp giải

Tính

Hàm số đồng biến trên từng khoảng xác định của nó ⇔ y’ > 0 ⇔ ad − cb > 0.

Hàm số nghịch biến trên từng khoảng xác định của nó ⇔ y’ < 0 ⇔ ad − cb < 0.

A. 2

B. 6

C. Vô số

D. 1

Lời giải

Chọn A

Tập xác định: D = (-∞;-3m) ∪ (-3m; +∞)

Ta có

Hàm số đổng biến trên khoảng

Mà m nguyên nên m ∊ {1; 2}

Ví dụ 2: Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng (6;+∞)

A. 0

B. 6

C. 3

D. Vô số

Lời giải

Chọn C

Tập xác định D = ℝ\{-3m};

Hàm số nghịch biến trên khoảng (6;+∞) khi và chỉ khi:

Vì m ∊ ℤ ⇒ m ∊ {-2; -1; 0}

Dạng 4: Tìm m để hàm số y = ax3 + bx2 + cx + d đơn điệu trên ℝ

Phương pháp giải

Hàm số đồng biến trên ℝ thì y’ ≥ 0, ∀ x ∊ ℝ ⇔ hoặc suy biến

Hàm số nghịch biến trên ℝ thì y’ ≤ 0, ∀ x ∊ ℝ ⇔ hoặc suy biến

A. 0

B. 3

C. 2

D. 1

Lời giải

Chọn C

TH1: m = 1. Ta có: y = – x + 4 là phương trình của một đường thẳng có hệ số góc âm nên hàm số luôn nghịch biến trên ℝ. Do đó nhận m = 1.

TH2: m = -1. Ta có: y = -2x2 – x + 4 là phương trình của một đường Parabol nên hàm số không thể nghịch biến trên ℝ. Do đó loại m = -1.

TH3: m ≠ 1. Khi đó hàm số nghịch biến trên khoảng (-∞;+∞) ⇔ y’ ≤ 0 ∀ x ∊ ℝ, dấu “=” chỉ xảy ra ở hữu hạn điểm trên ℝ.

⇔ 3(m2 – 1) x2 + 2(m – 1) x – 1 ≤ 0, ∀ x ∊ ℝ

Vì m ∊ ℤ nên m = 0

Vậy có 2 giá trị m nguyên cần tìm là m = 0 hoặc m = 1.

Ví dụ 2: Cho hàm số  y = -x3 – mx2 + (4m + 9) x + 5 , với m là tham số. Hỏi có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng (-∞;+∞)

A. 5

B. 4

C. 6

D. 7

Lời giải

Chọn D

Ta có:

TXĐ: D =  ℝ

y’ = -3x2 – 2mx + 4m + 9

Hàm số nghịch biến trên (-∞;+∞) khi y’ ≤ 0, ∀ x ∊ (-∞;+∞)

⇒ Có 7 giá trị nguyên của m thỏa mãn.

Ví dụ 3: Hỏi  có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số đồng biến trên khoảng (-∞;+∞)?

A. 4

B. 5

C. 3

D. 0

Lời giải

Chọn A

y’ = (m2 – m) x2 + 4mx + 3

Hàm số đã cho đồng biến trên khoảng (-∞;+∞) ⇔ y’ ≥ 0, ∀ x ∊ ℝ

Với m = 0 ta có y’ = 3 > 0 với ∀ x ∊ ℝ ⇒ Hàm số đồng biến trên khoảng (-∞;+∞).

Với m = 1 ta có y’ = 4x + 3 > 0 ⇔ x > -¾ ⇒ m = 1 không thỏa mãn.

Với ta có y’ ≥ 0, ∀ x ∊ ℝ

Tổng hợp các trường hợp ta được -3 ≤ m ≤ 0.

Vì m ∊ ℤ ⇒ m ∊ {-3; -2; -1; 0}.

Vậy có 4 giá trị nguyên của m thỏa mãn bài ra.

Dạng 5: Tìm m để hàm số lượng giác đơn điệu trên khoảng cho trước.

Để tìm hiểu chi tiết dạng toán này. Chúng ta có thể xem xét các ví dụ dưới đây:

A. m ≤ 0 hoặc 1 ≤ m < 2

B. m ≤ 0

C. 1 ≤ m < 2

D. m ≥ 2

Lời giải

Chọn A

Đặt t = tan x , vì x ∊ ⇒ t ∊ {0; 1}

Xét hàm số . Tập xác định: D = ℝ\{m}

Ta có

Ta thấy hàm số t(x) = tan x  đồng biến trên khoảng . Nên để hàm số đồng biến trên khoảng khi và chỉ khi: f’(t) > 0, ∀ t ∊ {0; 1}

Ví dụ 2: Tìm tất cả các giá trị thực của tham số để hàm số nghịch biến trên khoảng

A.

B.

C. m ≤ 3

D. m < 3

Lời giải

Chọn A

Điều kiện: cos x ≠ m. Ta có:

Vì x ∊ ⇒ sin x > 0, (cos x – m)2 > 0, ∀ x ∊ ; cos x ≠ m

Để hàm số nghịch biến trên khoảng ⇔ y’ < 0 ∀ x ∊

Chú ý: Tập giá trị của hàm số y = cos x, ∀ x ∊ là (-1; 0)

Dạng 6. Tìm khoảng đơn điệu khi biết đồ thị hàm f’(x)

Phương pháp giải

Loại 1: Cho đồ thị y = f’(x), hỏi tính đơn điệu của hàm y = f(x).
  • Tìm nghiệm của f’(x) = 0 (hoành độ giao điểm với trục hoành);
  • Xét dấu f’(x) (phần trên Ox mang dấu dương; phần dưới Ox mang dấu âm);
  • Lập bảng biến thiên của y = f(x), suy ra kết quả tương ứng.
Loại 2: Cho đồ thị y = f’(x), hỏi tính đơn điệu của hàm hợp y = f(u).

Tính y’ = u’ ‧ f’(u);

Giải phương trình f’(u) = 0  (Nhìn đồ thị, suy ra nghiệm);

Lập bảng biến thiên của y = f(u), suy ra kết quả tương ứng.

Loại 3: Cho đồ thị y = f’(x), hỏi tính đơn điệu của hàm hợp y = g(x), trong đó g(x) có liên hệ với f(x).
  • Tính y’ = g’(x);
  • Giải phương trình g’(x) = 0 (thường dẫn đến việc giải phương trình liên quan đến f’(x). Loại này ra nhìn hình để suy ra nghiệm);
  • Lập bảng biến thiên của y = g(x), suy ra kết quả tương ứng.

A. (2;+∞)

B. (-2; 1)

C. (-∞; -2)

D. (1; 3)

Lời giải

Chọn B

Cách 1:

Ta thấy f’(x) < 0 với nên f(x) nghịch biến trên (1; 4) và (-∞; -1) suy ra g(x) = f(-x) đồng biến trên (-4; -1) và (1; +∞). Khi đó f (2 – x) đồng biến trên khoảng (-2; 1) và (3; +∞)

Cách 2:

Dựa vào đồ thị của hàm số y = f’(x) ta có f’(x) < 0

Ta có (f (2 – x))’ = (2 – x)’. f’(2 – x) = – f’(2 – x)

Để hàm số y = f (2 – x) đồng biến thì (f (2 – x))’ > 0 ⇔ f’(2 – x) < 0

Ví dụ 2: Cho hàm số f(x), bảng xét dấu của f’(x) như sau:

Hàm số y = f (5 – 2x) đồng biến trên khoảng nào dưới đây?

A. (3; 4)

B. (1; 3)

C. (-∞; -3)

D. (4; 5)

Lời giải

Chọn D

Ta có y’ = f’(5 – 2x) = -2f’(5 – 2x)

Bảng biến thiên

Dựa vào bảng biến thiên hàm số y = f (5 – 2x) đồng biến trên khoảng (4; 5)

Dạng 7. Biện luận đơn điệu của hàm đa thức trên khoảng con của tập ℝ

Phương pháp giải

Loại 1: Tìm điều kiện của tham số để hàm số y = ax3 + bx2 + cx + d đơn điệu trên toàn miền xác định ℝ

Đồng biến trên hoặc suy biến

Nghịch biến trên ℝ thì hoặc suy biến

Loại 2: Tìm điều kiện của tham số để hàm số y = ax3 + bx2 + cx + d đơn điệu trên khoảng con của tập ℝ

Ta thường gặp hai trường hợp:

– Nếu phương trình y’ = 0 giải được nghiệm “đẹp”: Ta thiết lập bảng xét dấu y’ theo các nghiệm vừa tìm (xét hết các khả năng nghiệm trùng, nghiệm phân biệt). Từ đó “ép” khoảng mà dấu y’ không thỏa mãn ra khỏi khoảng đề bài yêu cầu.

– Nếu phương trình y’ = 0 có nghiệm “xấu” : Ta sử dụng 1 trong 2 cách sau

  • Cách 1. Dùng định lý về so sánh nghiệm (sẽ nói rõ hơn qua bài giải cụ thể).
  • Cách 2. Cô lập tham số m, dùng đồ thị (cách này xét sau).
Loại 3: Tìm điều kiện của tham số để hàm số y = ax4 + bx2 + c đơn điệu trên khoảng con của tập ℝ

Giải phương trình y’ = 0, tìm nghiệm.

Biện luận các trường hợp nghiệm (nghiệm trùng, nghiệm phân biệt). Từ đó “ép” khoảng mà dấu y’ không thỏa mãn ra khỏi khoảng đề bài yêu cầu.

A. 4

B. Vô số

C. 3

D. 5

Lời giải

Chọn D

D = ℝ \ {m};

Hàm số nghịch biến trên các khoảng xác định khi y’ < 0, ∀ x ∊ D ⇔ m2 – 4m < 0 ⇔ 0 < m < 4

Mà  m ∊ ℤ nên có 3 giá trị thỏa mãn.

Ví dụ 2: Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng (10; +∞)?

A. Vô số

B. 4

C. 5

D. 3

Lời giải

Chọn B

Tập xác định D = ℝ \ {-5m}

Hàm số nghịch biến trên (10; +∞) khi và chỉ khi

Mà  m ∊ ℤ nên m ∊ {-2; -1; 0; 1}

Tài liệu tính đơn điệu của hàm số

Bộ tài liệu hay nhất về tính đồng biến, nghịch biến của hàm số bao gồm: Lý thuyết, ví dụ và các bài tập vận dụng được tuyển chọn. Bạn nên xem kĩ tài liệu nào hay trước khi tải về và sử dụng để giúp quá trình học tập đạt được hiệu quả cao nhất.

1. Thông tin tài liệu

Thông tin
Tên tài liệuChuyên Đề Tính Đơn Điệu của Hàm Số
Tác giảThầy Hoàng Xuân Nhàn
Số trang52

2. Mục lục

  • Định nghĩa tính đơn điệu
  • Định lí về tính đơn điệu và dấu của đạo hàm
  • Dạng toán 1: Sử dụng đạo hàm để xét tính đơn điệu của hàm số
  • Dạng toán 2: Tìm tham số thỏa mãn tính đơn điệu của hàm số
  • Dạng toán 3: Ứng dụng tính đơn điệu của hàm số

3. Xem tài liệu

Trên đây là bài viết chi tiết về chủ đề tính đơn điệu của hàm số. Để thuần thục được dạng toán này, các bạn cần nắm vững các định lý, định nghĩ về tính đơn điệu, tính đạo hàm và quy tắc xét dấu cùng cách giải bất phương trình cơ bản.

Thầy Dũng dạy toán học từ năm 2010 sau khi nhận bằng sư phạm môn toán tại trường Đại Học Sư Phạm Đà Nẵng. Triết lý dạy học của thầy luôn coi trọng chất lượng hơn số lượng bởi ở một góc độ nào đó, chúng ta sử dụng toán học hằng ngày trong cuộc sống và cần phải hiểu rõ về bản chất của nó thay vì học sơ sài. Thầy cảm giác rất may mắn khi được làm biên tập viên cho môn toán tại VerbaLearn, nơi mà những bài dạy của thầy có thể tiếp cận nhiều học sinh hơn.

Từ khóa » Bài Tập Hàm Số đồng Biến Nghịch Biến Lớp 12