Các Số đặc Trưng Của Biến Ngẫu Nhiên Trong Xác Suất Thống Kê - 2

OPTADS360 intTypePromotion=1 zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn tailieu.vn NÂNG CẤP Đăng Nhập | Đăng Ký Chủ đề »
  • Đề thi toán cao cấp 2
  • Đại số tuyến tính
  • Toán rời rạc
  • Xác suất thống kê
  • Phương trình vi phân
    • Toán cao cấp
    • Toán kinh tế
  • HOT
    • FORM.07: Bộ 125+ Biểu Mẫu Báo Cáo...
    • FORM.04: Bộ 240+ Biểu Mẫu Chứng Từ Kế...
    • TL.01: Bộ Tiểu Luận Triết Học
    • FORM.08: Bộ 130+ Biểu Mẫu Thống Kê...
    • LV.26: Bộ 320 Luận Văn Thạc Sĩ Y...
    • CEO.24: Bộ 240+ Tài Liệu Quản Trị Rủi...
    • CEO.29: Bộ Tài Liệu Hệ Thống Quản Trị...
    • LV.11: Bộ Luận Văn Tốt Nghiệp Chuyên...
    • CEO.27: Bộ Tài Liệu Dành Cho StartUp...
    CMO.03: Bộ Tài Liệu Hệ Thống Quản Trị Marketing...
TUYỂN SINH YOMEDIA ADSENSE Trang Chủ » Khoa Học Tự Nhiên » Toán học Các số đặc trưng của biến ngẫu nhiên trong xác suất thống kê - 2

Chia sẻ: Le Nhu | Ngày: | Loại File: PDF | Số trang:5

Thêm vào BST Báo xấu 737 lượt xem 21 download Download Vui lòng tải xuống để xem tài liệu đầy đủ

mômen tất cả các bậc nhưng cũng có biến ngẫu nhiên không có mômen đối với mọi k, bắt đầu từ một số k nào đó. Điều này có nghĩa X chỉ có các momen gốc bậc 1, 2, 3 hữu hạn . b. Hệ số bất đối xứng và hệ số nhọn Định nghĩa 3.3. i) Cho biến ngẫu nhiên X có độ lệch tiêu chuẩn . Khi đó, hệ số bất đối xứng của X, ký hiệu được xác định bởi: ii) Cho biến ngẫu nhiên X có độ lệch tiêu chuẩn. Khi đó, hệ số nhọn của...

AMBIENT/ Chủ đề:
  • tài liệu ôn thi
  • giáo trình kinh tế
  • mẫu luận văn
  • giáo trình toán cao cấp
  • mẫu trình bày báo cáo

Bình luận(0) Đăng nhập để gửi bình luận!

Đăng nhập để gửi bình luận! Lưu

Nội dung Text: Các số đặc trưng của biến ngẫu nhiên trong xác suất thống kê - 2

  1. mômen tất cả các bậc nhưng cũng có biến ngẫu nhiên không có mômen đối với mọi k, bắt đầu từ một số k nào đó. Ví dụ 3.2. Cho biến ngẫu nhiên X có hàm mật độ Ta có Như vậy Điều này có nghĩa X chỉ có các momen gốc bậc 1, 2, 3 hữu hạn . b. Hệ số bất đối xứng và hệ số nhọn Định nghĩa 3.3. . Khi đó, hệ số bất đối xứng của i) Cho biến ngẫu nhiên X có độ lệch tiêu chuẩn X, ký hiệu được xác định bởi
  2. . Khi đó, hệ số nhọn của X, ký ii) Cho biến ngẫu nhiên X có độ lệch tiêu chuẩn hiệu được xác định bởi . Ví dụ 3.4. Cho biến ngẫu nhiên X có hàm phân phối a- Tìm momen gốc bậc k của X, k b- Xác định hệ số bất đối xứng và hệ số nhọn. Giải. Hàm mật độ của X là a- Dễ thấy mk = ,k b- Ta có
  3. Vậy hệ số bất đối xứng là và hệ số nhọn là . c. Mod và Med Định nghĩa 3.5. Mod của biến ngẫu nhiên X, ký hiệu xmod là giá trị của biến ngẫu nhiên mà tại đó phân phối đạt giá trị lớn nhất. Như vậy nếu X là biến ngẫu nhiên rời rạc thì Mod là gía trị mà tại đó xác suất tương ứng lớn nhất. Còn nếu X là biến ngẫu nhiên liên tục thì Mod là gía trị làm cho hàm mật độ f(x) đạt cực đại.
  4. Định nghĩa 3.6. Med (số trung vị ) của biến ngẫu nhiên X, kí hiệu xmed là giá trị của biến ngẫu nhiên mà tại đó giá trị của hàm phân phối bằng , nghĩa là F(xmed) . Nói cách khác, xmed là số trung vị nếu P[X < xmed] > = < P[X > xmed]. Như vậy, Med là điểm phân đôi khối lượng xác suất thành 2 phần bằng nhau. Với một biến ngẫu nhiên X có thể có một điểm Med hoặc có thể một khoảng Med. Ví dụ 3.7. Cho biến ngẫu nhiên X có hàm mật độ Xác định EX, xmod và xmed. Giải. Ta có nên f(x) đạt cực đại tại x =1. Vậy xmod = 1. Do Hàm phân phối của X là
  5. Dễ thấy phương trình có nghiệm x = 1. Vậy xmed = 1. Nhận xét: trong ví dụ trên ta thấy E(X) = xmod = xmed = 1. Điều này xảy ra là do biến ngẫu nhiên X có phân phối đối xứng.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

  • Các số đặc trưng của biến ngẫu nhiên trong xác suất thống kê - 1

    pdf 5 p | 841 | 40

  • Bài giảng Xác suất thống kê: Chương 1 và 2

    pdf 90 p | 412 | 28

  • Bài giảng Lý thuyết xác suất và thống kê toán: Chương 6 - ĐH Kinh tế TP.HCM

    ppt 78 p | 142 | 17

  • Bài giảng Lý thuyết xác suất và thống kê toán: Chương 7 - Hoàng Thị Diễm Hương

    ppt 18 p | 149 | 14

  • Phân tích một số đặc trưng động lực ảnh hưởng đến diễn biến hình thái cửa sông Đà Rằng, tỉnh Phú Yên

    pdf 11 p | 117 | 10

  • Bài giảng Xác xuất thống kê (Phần 1) - Chương 2: Biến ngẫu nhiên

    pdf 94 p | 108 | 7

  • Bài giảng Lý thuyết xác suất và thống kê toán - Bài 2: Biến ngẫu nhiên và quy luật phân bố xác suất

    pdf 40 p | 74 | 6

  • Bài giảng Xác suất thống kê A - ĐH Phạm Văn Đồng

    pdf 219 p | 66 | 6

  • Bài giảng Xác suất thống kê - Chương 2: Biến ngẫu nhiên một chiều

    ppt 128 p | 112 | 6

  • Bài giảng Quá trình thiết bị công nghệ hóa học: Chương 9 - Nguyễn Minh Tân

    pdf 60 p | 11 | 4

  • Bài giảng Xác suất ứng dụng: Chương 2 - Nguyễn Hoàng Tuấn

    pdf 22 p | 31 | 4

  • Bài giảng Cơ sở khoa học của biến đổi khí hậu (Đại cương về BĐKH) – Phần I: Bài 5 – ĐH KHTN Hà Nội

    pdf 40 p | 20 | 4

  • Một số đặc điểm của các đợt haze tại Hà Nội

    pdf 6 p | 21 | 4

  • Bài giảng Xác suất thống kê và quy hoạch thực nghiệm: Chương 2.2 - Nguyễn Thị Thanh Hiền

    pdf 80 p | 12 | 4

  • Khảo sát một số đặc tính của slinky bằng mô hình rời rạc hóa

    pdf 8 p | 10 | 3

  • Biến động năm của một số đặc trưng gió mùa mùa hè ở khu vực Việt Nam

    pdf 8 p | 40 | 2

  • Hạn chớp nhoáng và một số đặc trưng của nó ở Việt Nam giai đoạn 1961-2020

    pdf 12 p | 7 | 1

  • Bài giảng Lý thuyết xác suất: Chương 2 - Trường ĐH Sư phạm Hà Nội

    pdf 92 p | 12 | 1

Thêm tài liệu vào bộ sưu tập có sẵn: Đồng ý Thêm vào bộ sưu tập mới: *Tên bộ sưu tập Mô Tả: *Từ Khóa: Tạo mới Báo xấu
  • Hãy cho chúng tôi biết lý do bạn muốn thông báo. Chúng tôi sẽ khắc phục vấn đề này trong thời gian ngắn nhất.
  • Không hoạt động
  • Có nội dung khiêu dâm
  • Có nội dung chính trị, phản động.
  • Spam
  • Vi phạm bản quyền.
  • Nội dung không đúng tiêu đề.
Hoặc bạn có thể nhập những lý do khác vào ô bên dưới (100 ký tự): Vui lòng nhập mã xác nhận vào ô bên dưới. Nếu bạn không đọc được, hãy Chọn mã xác nhận khác.. Đồng ý LAVA AANETWORK THÔNG TIN
  • Về chúng tôi
  • Quy định bảo mật
  • Thỏa thuận sử dụng
  • Quy chế hoạt động
TRỢ GIÚP
  • Hướng dẫn sử dụng
  • Upload tài liệu
  • Hỏi và đáp
HỖ TRỢ KHÁCH HÀNG
  • Liên hệ
  • Hỗ trợ trực tuyến
  • Liên hệ quảng cáo
Theo dõi chúng tôi

Chịu trách nhiệm nội dung:

Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA

LIÊN HỆ

Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM

Hotline: 093 303 0098

Email: support@tailieu.vn

Giấy phép Mạng Xã Hội số: 670/GP-BTTTT cấp ngày 30/11/2015 Copyright © 2022-2032 TaiLieu.VN. All rights reserved.

Đang xử lý... Đồng bộ tài khoản Login thành công! AMBIENT

Từ khóa » Hệ Số Bất đối Xứng Là Gì