Cách Chứng Minh Các Hệ Thức Lượng Trong Tam Giác Vuông Cực Hay

Cách chứng minh các hệ thức lượng trong tam giác vuông lớp 9 (cực hay)
  • Siêu sale sách Toán - Văn - Anh Vietjack 25-12 trên Shopee mall
Trang trước Trang sau

Bài viết Cách chứng minh các hệ thức lượng trong tam giác vuông lớp 9 với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách chứng minh các hệ thức lượng trong tam giác vuông.

  • Cách giải bài tập Cách chứng minh các hệ thức lượng trong tam giác vuông
  • Ví dụ minh họa Cách chứng minh các hệ thức lượng trong tam giác vuông
  • Bài tập tự luyện Cách chứng minh các hệ thức lượng trong tam giác vuông

Cách chứng minh các hệ thức lượng trong tam giác vuông lớp 9 (cực hay)

A. Phương pháp giải

1. Chọn các tam giác vuông thích hợp chứa các đoạn thẳng có trong hệ thức. Tính các đoạn thẳng đó nhờ các hệ thức về cạnh và đường cao.

2. Liên kết các giá trị trên và rút ra hệ thức phải chứng minh.

Cho ΔABC, Cách tính độ dài cạnh góc vuông trong tam giác vuông cực hay = 900, AH ⊥ BC, BC = a, AB = c, AC = b, AH = h thì:

+) BH = c’ được gọi là hình chiếu của AB trên cạnh huyền BC

+) CH = b’ được gọi là hình chiếu của AC trên cạnh huyền BC

Cách tính độ dài cạnh góc vuông trong tam giác vuông cực hay

Khi đó ta có các hệ thức về cạnh và đường cao trong tam giác vuông:

1) b2 = ab'; c2 = ac'

2) h2 = b'c'

3) ha = bc

4) Cách tính độ dài cạnh góc vuông trong tam giác vuông cực hay

5) a2 = b2 + c2( Định lý Pytago)

B. Ví dụ minh họa

Ví dụ 1: Cho ΔABC vuông tại A, đường cao AH. Chứng minh rằng:

BH2 + CH2 = AB2 + AC2 - 2AH2

Bài giải:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay

+) Áp dụng hệ thức lượng cho ΔABC vuông tại A, đường cao AH ta có:

AH2 = BH.CH (1)

+) Áp dụng định lý Py – ta – go cho tam giác ABC có:

AB2 + AC2 = BC2

⇔ AB2 + AC2 = (BH + CH)2

⇔ AB2 + AC2 = BH2 + CH2 + 2.BH.CH (2)

Thay (1) vào (2) ta được:

⇔ AB2 + AC2 = BH2 + CH2 + 2AH2

⇔ BH2 + CH2 = AB2 + AC2 - 2AH2

Vậy BH2 + CH2 = AB2 + AC2 - 2AH2

Ví dụ 2: Cho ΔABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB và AC. Hãy chứng minh

3AH2 + BD2 + CE2 = BC2

Bài giải:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay

+) Xét ΔBHD vuông tại D, áp dụng định lý Py – ta – go ta có: BD2 = BH2 - DH2

+) Xét ΔCHE vuông tại E, áp dụng định lý Py – ta – go ta có: CE2 = CH2 - EH2

+) Xét ΔABC vuông tại A, áp dụng định lý Py – ta – go ta có: BC2 = AB2 + AC2

+) Xét ΔAHE vuông tại E, áp dụng định lý Py – ta – go ta có: AH2 = AE2 + EH2

Ta có:

3AH2 + BD2 + CE2 = BC2

⇔ 3AH2 + (BH2 - DH2) + (CH2 - EH2) = AB2 + AC2 ( Định lý Py – ta – go cho ba tam giác vuông ΔBHD, ΔCHE và ΔABC )

⇔ 3AH2 + BH2 + CH2 - (EH2 + DH2) = AB2 + AC2 (*)

+) Xét tứ giác ADHE có:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay = 900 (gt)

⇒ Tứ giác ADHE là hình chữ nhật ⇒ DH = AE

Thay DH = AE vào (*) ta có:

(*) ⇔ 3AH2 + BH2 + CH2 - (EH2 + AE2) = AB2 + AC2

⇔ 3AH2 + BH2 + CH2 - AH2 = AB2 + AC2 (do AH2 = AE2 + EH2)

⇔ BH + CH + 2AH = AB + AC (luôn đúng theo ví dụ 1)

Vậy 3AH2 + BD2 + CE2 = BC2.

Ví dụ 3: Cho ΔABC vuông tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu vuông góc của H trên AB và AC. Chứng minh rằng:

a) AM.AB = AN. AC

b) HB.HC = MA.MB + NA.NC

Bài giải:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay

a) Xét ΔABH có: AH ⊥ BC ⇒ Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay = 900

⇒ ΔABH vuông tại H

Mà HM AB ⇒ AM.AB = AH2 ( Hệ thức lượng trong tam giác vuông)

Chứng minh tương tự: AN.AC = AH2

Vậy suy ra AH2 = AM.AB = AN.AC (đpcm)

b)

+) Xét tam giác ABC vuông tại A có AH ⊥ BC (gt)⇒ AH2 = BH.CH( Hệ thức lượng trong tam giác vuông)

Chứng minh tương tự:

Xét tam giác vuông ABH ta có: MH2 = BM.AM

Xét tam giác vuông ACH có: NH2 = AN.CN

+) Xét tứ giác AMHN có:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay = 900 (gt)

⇒ Tứ giác AMHN là hình chữ nhật ⇒ NH = AM

+) Xét tam giác vuông AMH có:

AH2 = AM2 + MH2 ( Định lý Py – ta – go)

⇔ AH2 = MH2 + NH2 ( do AM = NH – cmt)

⇔ BH.CH = BM.AM + AN.Cn (đpcm)

Vậy HB.HC = MA.MB + NA.NC.

Ví dụ 4: Cho ΔABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB và AC. Hãy chứng minh:

a) Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay

b) AH3 = BC.BD.CE

Bài giải:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay

a) Áp dụng hệ thức lượng cho ΔABC vuông tại A, đường cao AH ta có:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay

b)

+) Xét ΔABH có: AH ⊥ BC ⇒ Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay = 900

⇒ ΔABH vuông tại H

Mà HD ⊥ AB ⇒ BH2 = BD.AB ( Hệ thức lượng trong tam giác vuông)

Chứng minh tương tự ta có: CH2 = EC.AC

+) Xét tam giác ABC có:

AH2 = BH.CH ( Hệ thức lượng trong tam giác vuông)

⇔ AH4 = BH2.CH2

⇒ AH4 = BD.AB.AC.EC

⇔ AH4 = BD.CE.(AB.AC)

Mặt khác AB.AC = AH.BC ( Hệ thức lượng trong tam giác vuông)

⇔ AH4 = BD.CE.AH.BC

Do AH > 0 nên chia cả hai vế cho AH ta được:

⇔ AH3 = BD.CE.BC (đpcm)

Vậy AH3 = BC.BD.CE.

Ví dụ 5: Cho tam giác ABC vuông tại A. Trên AB lấy điểm D, trên AC lấy điểm E. Chứng minh: CD2 + BE2 = CB2 + DE2

Bài giải:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay

Áp dụng định lý Py – ta – go cho các tam giác ΔABC, ΔABE có:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay (1)

Mặt khác áp dụng định lý Py – ta – go cho ΔABC và ΔADE có:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay (2)

Từ (1) và (2) suy ra: CD2 + BE2 = CB2 + DE2 - đpcm

Ví dụ 6: Cho tam giác ABC cân tại A, ba đường cao AD, BE, CF. Đường thẳng qua B và song song với CF cắt đường thẳng AC tại H. Chứng minh rằng:

a) AC là trung bình nhân của AE và AH

b) Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay

Bài giải:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay

a) Ta có Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay

Xét ΔABH vuông tại B có BE là đường cao nên AB2 = AH.AE

Mà ΔABC cân tại A ⇒ AB = AC do đó AC2 = AB2 = AH.AE

Vậy AC2 = AH.AE.

b)

+) Xét ΔABC cân tại A có AD là đường cao

⇒ AD cũng đồng thời là đường trung tuyến ⇒ BD = CD = Cách chứng minh các hệ thức lượng trong tam giác vuông cực hayBC

Từ D dựng DK ⊥ AB (K ∈ AB)

Mà CF ⊥ AB (gt) ⇒ KD // CF

+) Xét ΔBFC có: Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay

DK là đường trung bình của ΔBFC ⇒ KD = Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay CF

+) Xét ΔABD vuông tại D có: KD ⊥ AB (gt)

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay (Hệ thức lượng trong tam giác vuông)

Mặt khác nên ta được:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay

Ví dụ 7: Cho góc xOy và tia Oz nằm giữa hai tia Ox và Oy. Từ điểm A trên tia Oz vẽ AH ⊥ Ox, AK ⊥ Oy. Gọi E và F lần lượt là hình chiếu của H và K trên Oz, gọi B là giao điểm của HK và Oz. Chứng minh rằng:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay

Bài giải:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay

+) Xét ΔOHA vuông tại H có HE ⊥ OA (gt)

⇒ HE2 = EA.EO( Hệ thức lượng trong tam giác vuông) (1)

+) Xét ΔOKA vuông tại H có KF ⊥ OA (gt)

⇒ KF2 = FA.FO ( Hệ thức lượng trong tam giác vuông) (2)

Từ (1) và (2) suy ra:

Cách chứng minh các hệ thức lượng trong tam giác vuông cực hay

C. Bài tập tự luyện

Bài 1. Cho tam giác CDE nhọn, đường cao CH. Gọi M, N theo thứ tự là hình chiếu của H lên CD, CE. Chứng minh:

a) CD.CM = CE.CN;

b) ∆CMN ∼ ∆CED.

Bài 2. Cho hình vuông ABCD. Gọi I là một điểm nằm giữa A và B . Tia DI và tia CB cắt nhau ở K . Kẻ đường thẳng qua D , vuông góc với DI, cắt đường thẳng BC tại L. Chứng minh:

a) Tam giác DIL là tam giác cân;

b) Tổng 1DI2+1DK2 không đổi khi I thay đổi trên AB.

Bài 3. Cho hình thoi ABCD có hai đường chéo cắt nhau tại O. Cho biết khoảng cách từ O tới mỗi cạnh hình thoi là h, AC = m, BD = n. Chứng minh: 1m2+1n2=14h2.

Bài 4. Cho tam giác ABC vuông tại A có đường cao AH. Gọi M, N lần lượt là hình chiếu của H lên các cạnh AB, AC. Chứng minh

a) AC2AC2=BHCH;                                         b) AC3AC3=MBNC;

c) MN3 = BM.CN.BC;                                  d) BC23=BD23+CE23.

Bài 5. Cho tam giác ABC vuông tại C có đường cao CK.

a) Biết AB = 10cm, AC = 8cm. Hãy tính BC, CK, BK, AK;

b) Gọi H và I theo thứ tự là hình chiếu của K lên BC và AC. Chứng minh BC.CH = AC.IC.

c) Gọi M là chân đường vuông góc kẻ từ K xuống IH. Chứng minh 1MK2=1CH2+1CI2.

d) Chứng minh AIBH=AC3BC3.

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có lời giải chi tiết hay khác:

  • Công thức, cách tính tỉ số lượng giác của góc nhọn cực hay
  • Dụng góc nhọn alpha khi biết tỉ số lượng giác sin, cos, tan của góc đó
  • Chứng minh hệ thức lượng giác trong tam giác vuông cực hay
  • Cho biết một tỉ số lượng giác của góc nhọn a tính các tỉ số lượng giác còn lại của a
  • Cách tính giá trị biểu thức lượng giác (không dùng máy tính) cực hay
  • Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí

Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):

  • Giải mã đề thi vào 10 theo đề Hà Nội, Tp. Hồ Chí Minh (300 trang - từ 99k/1 cuốn)
  • Bộ đề thi thử 10 chuyên (120 trang - từ 99k/1 cuốn)
  • Cấp tốc 7,8,9+ Toán Văn Anh thi vào 10 (400 trang -từ 119k)
  • Hơn 20.000 câu trắc nghiệm Toán,Văn, Anh lớp 9 có đáp án

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Giáo án, bài giảng powerpoint Văn, Toán, Lí, Hóa....

4.5 (243)

799,000đs

199,000 VNĐ

Đề thi vào 10 Toán Văn Anh của Hà Nội, Tp.Hồ Chí Minh... có lời giải

4.5 (243)

799,000đ

199,000 VNĐ

Sách Toán - Văn- Anh 6-7-8-9, luyện thi vào 10

4.5 (243)

199,000đ

99.000 - 149.000 VNĐ

xem tất cả

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS. Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Trang trước Trang sau chuong-1-he-thuc-luong-trong-tam-giac-vuong.jsp Giải bài tập lớp 9 sách mới các môn học
  • Giải Tiếng Anh 9 Global Success
  • Giải sgk Tiếng Anh 9 Smart World
  • Giải sgk Tiếng Anh 9 Friends plus
  • Lớp 9 Kết nối tri thức
  • Soạn văn 9 (hay nhất) - KNTT
  • Soạn văn 9 (ngắn nhất) - KNTT
  • Giải sgk Toán 9 - KNTT
  • Giải sgk Khoa học tự nhiên 9 - KNTT
  • Giải sgk Lịch Sử 9 - KNTT
  • Giải sgk Địa Lí 9 - KNTT
  • Giải sgk Giáo dục công dân 9 - KNTT
  • Giải sgk Tin học 9 - KNTT
  • Giải sgk Công nghệ 9 - KNTT
  • Giải sgk Hoạt động trải nghiệm 9 - KNTT
  • Giải sgk Âm nhạc 9 - KNTT
  • Giải sgk Mĩ thuật 9 - KNTT
  • Lớp 9 Chân trời sáng tạo
  • Soạn văn 9 (hay nhất) - CTST
  • Soạn văn 9 (ngắn nhất) - CTST
  • Giải sgk Toán 9 - CTST
  • Giải sgk Khoa học tự nhiên 9 - CTST
  • Giải sgk Lịch Sử 9 - CTST
  • Giải sgk Địa Lí 9 - CTST
  • Giải sgk Giáo dục công dân 9 - CTST
  • Giải sgk Tin học 9 - CTST
  • Giải sgk Công nghệ 9 - CTST
  • Giải sgk Hoạt động trải nghiệm 9 - CTST
  • Giải sgk Âm nhạc 9 - CTST
  • Giải sgk Mĩ thuật 9 - CTST
  • Lớp 9 Cánh diều
  • Soạn văn 9 Cánh diều (hay nhất)
  • Soạn văn 9 Cánh diều (ngắn nhất)
  • Giải sgk Toán 9 - Cánh diều
  • Giải sgk Khoa học tự nhiên 9 - Cánh diều
  • Giải sgk Lịch Sử 9 - Cánh diều
  • Giải sgk Địa Lí 9 - Cánh diều
  • Giải sgk Giáo dục công dân 9 - Cánh diều
  • Giải sgk Tin học 9 - Cánh diều
  • Giải sgk Công nghệ 9 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
  • Giải sgk Âm nhạc 9 - Cánh diều
  • Giải sgk Mĩ thuật 9 - Cánh diều

Từ khóa » Hệ Thức Lượng Trong Tam Giác Vuông đảo