Cách Giải Phương Trình Bậc 2 Số Phức Cực Hay, Chi Tiết - Toán Lớp 12
Có thể bạn quan tâm
- HOT Ra mắt Sách tổng ôn 12 (2k8) toán, văn, anh.... (từ 80k/1 cuốn)
Bài viết Cách giải phương trình bậc 2 số phức với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách giải phương trình bậc 2 số phức.
- Cách giải bài tập phương trình bậc 2 số phức
- Bài tập vận dụng Phương trình bậc 2 số phức
- Bài tập tự luyện Phương trình bậc 2 số phức
Cách giải phương trình bậc 2 số phức (cực hay, chi tiết)
(199k) Xem Khóa học Toán 12 KNTTXem Khóa học Toán 12 CDXem Khóa học Toán 12 CTST
Bài giảng: Các phép biến đổi cơ bản trên tập hợp số phức - Cô Nguyễn Phương Anh (Giáo viên VietJack)
A. Phương pháp giải & Ví dụ
Quảng cáo- Giải các phương trình bậc hai với hệ số thực
Cho phương trình bậc hai ax2 + bx + c = 0( a;b;c ∈ R;a ≠ 0).
Xét Δ = b2 - 4ac, ta có
+ Δ = 0 phương trình có nghiệm thực x = .
+ Δ > 0 : phương trình có hai nghiệm thực được xác định bởi công thức:
+ Δ < 0 : phương trình có hai nghiệm phức được xác định bởi công thức:
+ Chú ý.
Mọi phương trình bậc n: luôn có n nghiệm phức (không nhất thiết phân biệt).
Hệ thức Vi–ét đối với phương trình bậc hai với hệ số thực: Cho phương trình bậc hai ax2 + bx + c = 0( a; b;c ∈ R;a ≠ 0 có hai nghiệm phân biệt x1;x2 (thực hoặc phức).
- Phương trình quy về phương trình bậc hai với hệ số thực
Phương pháp 1: Phân tích đa thức thành nhân tử:
– Bước 1: Nhẩm 1 nghiệm đặc biệt của phương trình.
+ Tổng các hệ số trong phương trình là 0 thì phương trình có một nghiệm x = 1.
+ Tổng các hệ số biến bậc chẵn bằng tổng các hệ số biến bậc lẻ thì phương trình có một nghiệm x= -1.
– Bước 2: Đưa phương trình về phương trình bậc nhất hoặc bậc hai bằng cách hân tích đa thức ở vế trái của phương trình thành nhân tử (dùng hẳng đảng thức, chia đa thức hoặc sử dụng lược đồ Hoocne) như sau:
Với đa thức f(x) = anxn + an - 1xn - 1 + .... + a1x + ao chia cho x - a có thương là
g(x) = bnxn + bn - 2xn - 2 + .... + b1x + bo dư r
Ví dụ minh họa
| an | an-1 | an-2 | a2 | a1 | ao | |
| a | bn-1 = an | bn-2 = abn-1 + an-2 | bn-3 = abn-2 + an-3 | b1 = ab2 + a2 | bo = ab1 + a1 | r = abo + bo |
– Bước 3: Giải phương trình bậc nhất hoặc bậc hai, kết luận nghiệm
Phương pháp 2: Đặt ẩn phụ:
– Bước 1: Phân tích phương trình thành các đại lượng có dạng giống nhau.
– Bước 2: Đặt ẩn phụ, nêu điều kiện của ẩn phụ (nếu có).
– Bước 3: Đưa phương trình ban đầu về phương trình bậc nhất, bậc hai với ẩn mới.
– Bước 4: Giải phương trình, kết luận nghiệm.
Ví dụ 1:Giải phương trình bậc hai sau: z2 - z + 1 = 0
Lời giải:
Ta có a = 1 ; b = -1 ; c = 1 nên Δ = b2 - 4ac = -3 < 0
Phương trình có hai nghiệm phức phân biệt là
Ví dụ 2:Trong C , nghiệm của phương trình z2 + √5 = 0 là:
Lời giải:
Chọn đáp án B
Ví dụ 3:Trong C , nghiệm của phương trình z3 - 8 = 0 là :
Lời giải:
Sử dụng hằng đẳng thức số 7, ta có:
Vậy phương trình đã cho có 3 nghiệm phân biệt.
Ví dụ 4:Trong C , phương trình z2 + 3iz + 4 = 0 có nghiệm là:
Lời giải:
Ta có : a = 1 ; b = i ; c = 4 nên :
Δ = b2 - 4ac = (3i)2 - 4.1.4 = -25 <0
Phương trình có hai nghiệm phức là:
Chọn đáp án A.
Ví dụ 5:Cho z = 1 - i. Tìm căn bậc hai dạng lượng giác của z:
Lời giải:
Chọn đáp án A.
Ví dụ 6: Trong C , phương trình (z2 + i)(z2- 2iz - 1) = 0 có nghiệm là:
Lời giải:
Chọn đáp án A.
Ví dụ 7:Trong C , phương trình có nghiệm là:
(1 ± √3)i B. (5 ± √2)i C. (1 ± √2)i D.(2 ± √(5)i)
Lời giải:
Chọn đáp án A.
B. Bài tập vận dụng
Câu 1:Trong C, phương trình 2x2 + x + 1 = 0 có nghiệm là:
Lời giải:
Đáp án : A
Giải thích :
Ta có:Δ = b2 - 4ac = 12 - 4.1.1 = -7 = 7i2 <0
nên phương trình có hai nghiệm phức là:
Câu 2:Trong C , phương trình z2 - z + 1 = 0 có nghiệm là:
Lời giải:
Đáp án : D
Giải thích :
Δ = b2 - 4ac = -3 < 0
Nên phương trình có hai nghiệm phức là:
Câu 3:Trong C , nghiệm của phương trình z2 = -5 + 12i là:
Lời giải:
Đáp án : A
Giải thích :
Giả sử z = x + yi là một nghiệm của phương trình.
Do đó phương trình có hai nghiệm là
Câu 4: Trong C , phương trình z4-6z2 + 25 = 0 có nghiệm là:
Lời giải:
Đáp án : D
Giải thích :
Câu 5:Biết z1;z2 là hai nghiệm của phương trình z2 + √3 z + 3 = 0. Khi đó giá trị của z12 + z22 là:
Lời giải:
Đáp án : D
Giải thích :
Câu 6: Phương trình z2 + az + b = 0 có một nghiệm phức là z = 1 + 2i. Tổng 2 số a và b bằng:
A. 0 B. C. 3 D. -1
Lời giải:
Đáp án : C
Giải thích :
Vì z = 1 + 2i là một nghiệm của phương trình z2 + az + b = 0 nên ta có:
(1 + 2)2 + a(1 + 2i) + b = 0
<=> a + b + 2ai = 3 - 4i
<=> a + b = 3
Câu 7:Gọi z1;z2 là hai nghiệm phức của phương trình z2 - 4z + 5 = 0. Khi đó phần thực của z12 + z22 là:
A. 5 B. 6 C. 4 D. 7
Lời giải:
Đáp án : B
Giải thích :
Theo Viet, ta có:
Câu 8:Gọi z1;z2 là hai nghiệm phức của phương trình z2 + 2z + 4 = 0. Khi đó A = |z1|2 + |z2|2 có giá trị là
A.-7 B. – 8 C.-4 D. 8
Lời giải:
Đáp án : D
Giải thích :
Câu 9: Cho số phức z thỏa mãn z2 - 6z + 13 = 0. Tính
A. √17 và 4 B. √17 và 5 C. √17 và 3 D. √17 và 2
Lời giải:
Đáp án : B
Giải thích :
Câu 10: Gọi z1;z2 là các nghiệm phức của phương trình z2 + (1-3i)z - 2(1+i) = 0. Khi đó w = z12 + z22 - 3 z1z2 là số phức có môđun là:
A.5 B.√13 C. 2√13 D. √20
Lời giải:
Đáp án : D
Giải thích :
Theo Viet, ta có:
Câu 11: Số nghiệm của phương trình với ẩn số phức z: 4z2 + 8|z|2 -3 = 0 là:
A. 3 B. 2 C. 4 D. 1
Lời giải:
Đáp án : C
Giải thích :
Gọi z = a + bi là nghiệm của phương trình.
Ta có:
Vậy phương trình có 4 nghiệm phức
Câu 12: Cho phương trình z2 + mz - 6i = 0. Để phương trình có tổng bình phương hai nghiệm bằng 5 thì m = +(a + bi) (a,b ∈ R) có dạng . Giá trị a+2b là:
A. 0 B. 1 C. -2 D. -1
Lời giải:
Đáp án : D
Giải thích :
Gọi z1;z2 là hai nghiệm của phương trình đã cho
Theo Viet, ta có:
Theo bài cho, tổng bình phương hai nghiệm bằng 5. Ta có:
Câu 13:Gọi z1;z2;z3;z4 là các nghiệm phức của phương trình Giá trị của
là :
Lời giải:
Đáp án : B
Giải thích :
Với mọi , ta có:
C. Bài tập tự luyện
Bài 1. Trong C, tìm nghiệm của phương trình z3 - 8 = 0.
Bài 2. Giải phương trình: z2 + 3iz + 4 = 0.
Bài 3. Giải phương trình: (z2 + i)(z2 - 2iz - 1) = 0.
Bài 4. Giải phương trình: z + 1z = 2i.
Bài 5. Giải phương trình:
a) 2x2 + x + 1 = 0.
b) z2 – z + 1 = 0.
c) z2 = –5 + 12i.
(199k) Xem Khóa học Toán 12 KNTTXem Khóa học Toán 12 CDXem Khóa học Toán 12 CTST
Xem thêm các dạng bài tập Toán lớp 12 ôn thi Tốt nghiệp có lời giải hay khác:
- Dạng 1: Tìm căn bậc hai của số phức
- Trắc nghiệm giải phương trình bậc 2 số phức
- Viết số phức dưới dạng lượng giác
- HOT 500+ Đề thi thử tốt nghiệp THPT, ĐGNL các trường ĐH fle word có đáp án (2025).
Sách VietJack thi THPT quốc gia 2026 cho 2k8:
- Sổ tay toán, lý, hóa, văn, sử, địa 12 (29k/ 1 cuốn)
- Tổng ôn tốt nghiệp 12 toán, sử, địa, kinh tế pháp luật.... (80k/1 cuốn)
- 30 đề Đánh giá năng lực đại học quốc gia Hà Nội, tp. Hồ Chí Minh 2026 (cho 2k8)
TÀI LIỆU FILE WORD DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12
+ Bộ giáo án, đề thi tốt nghiệp THPT, DGNL các trường các trường có lời giải chi tiết 2025 tại https://tailieugiaovien.com.vn/
+ Hỗ trợ zalo: VietJack Official
+ Tổng đài hỗ trợ đăng ký : 084 283 45 85
500+ đề thi thử tốt nghiệp THPT Quốc gia form 2025
( 128 tài liệu )
100+ đề thi ĐGNL ĐHQG Hà Nội, Tp.Hồ Chí Minh...
( 84 tài liệu )
Đề thi giữa kì, cuối kì 12
( 143 tài liệu )
Bài giảng Powerpoint Văn, Sử, Địa 12....
( 31 tài liệu )
Chuyên đề dạy thêm Toán, Lí, Hóa ...12
( 104 tài liệu )
Đề thi HSG 12
( 4 tài liệu )
xem tất cảĐã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
Trang trước Trang sau so-phuc.jsp Giải bài tập lớp 12 sách mới các môn học- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều
Từ khóa » Giải Pt Nghiệm Phức
-
Giải Phương Trình Số Phức, Trắc Nghiệm Toán Học Lớp 12 - Baitap123
-
Các Dạng Bài Tập Giải Phương Trình Bậc 2 Số Phức - Tuyển Sinh
-
Giải Phương Trình Số Phức Như Thế Nào? - Toán Thầy Định
-
Giải Phương Trình Trên Tập Số Phức - Chủ Đề Toán 12 - Để Học Tốt
-
Tổng Hợp Giải Phương Trình Bậc 2 Số Phức | Bán Máy Nước Nóng
-
Phương Trình Bậc 2 Số Phức Cực đầy đủ Và Chi Tiết - Học Thật Giỏi
-
Giải Phương Trình Bậc Hai Trên Tập Số Phức, Tính Toán Biểu Thức Nghiệm
-
Toán 12 - Số Phức, Giải Phương Trình Bậc 2 Nghiệm Phức
-
Lý Thuyết Giải Phương Trình Nghiệm Phức Bậc Cao Toán 12
-
Nghiệm Của Phương Trình Bậc Hai - Tỷ Mỷ Làm Toán. Độc Lập Suy Nghĩ.
-
Chủ đề 2: Giải Phương Trình Bậc 2 Số Phức - Lib24.Vn
-
Giải Phương Trình Trên Tập Số Phức – Môn Toán Lớp 12 - YouTube
-
Các Dạng Bài Tập Giải Phương Trình Bậc 2 Số Phức
-
Bài 2: CĂN BẬC HAI CỦA SỐ PHỨC & PHƯƠNG TRÌNH BẬC HAI