Cách Giải Phương Trình Vô Tỉ Bằng Phương Pháp đặt ẩn Phụ Cực Hay
Có thể bạn quan tâm
- HOT Sale 40% sách cấp tốc Toán - Văn - Anh vào 10 ngày 12-12 trên Shopee mall
Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ lớp 9 với phương pháp giải chi tiết và bài tập đa dạng giúp học sinh ôn tập, biết cách làm bài tập phương trình vô tỉ bằng phương pháp đặt ẩn phụ.
- Phương pháp giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ
- Ví dụ minh họa phương trình vô tỉ bằng phương pháp đặt ẩn phụ
- Bài tập trắc nghiệm tự luyện phương trình vô tỉ bằng phương pháp đặt ẩn phụ
- Bài tập tự luyện phương trình vô tỉ bằng phương pháp đặt ẩn phụ
Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay
(199k) Xem Khóa học Toán 9 KNTTXem Khóa học Toán 9 CDXem Khóa học Toán 9 CTST
Phương pháp giải
Bước 1: Tìm đkxđ.
Bước 2: Đặt một (hoặc nhiều) biểu thức thích hợp làm ẩn mới, (thường là các biểu thức chứa căn thức) tìm điều kiện của ẩn mới.
Bước 3: Biến đổi phương trình theo ẩn mới (Có thể biến đổi hoàn toàn thành ẩn mới hoặc để cả 2 ẩn cũ và mới) rồi giải phương trình theo ẩn mới.
Bước 4: Thay trả lại ẩn cũ và tìm nghiệm, đối chiếu đkxđ và kết luận.
Ví dụ minh họa
Ví dụ 1: Giải phương trình
Hướng dẫn giải:
Đkxđ: ∀ x ∈ R.
Phương trình trở thành:
t2 + t – 42 = 0 ⇔ (t – 6)(t + 7) = 0
Với t = 6 ⇒
⇔ 2x2 + 3x + 9 = 36
⇔ 2x2 + 3x - 27 = 0
⇔ (x-3) (2x+9) = 0 .
⇔ x = 3 hoặc x = -9/2
Vậy phương trình có hai nghiệm x = 3 và x = -9/2.
Ví dụ 2: Giải phương trình
Hướng dẫn giải:
Đkxđ : 4x2 + 5x + 1 ≥ 0
Phương trình trở thành : a - b = a2 - b2
⇔ (a-b)(a+b-1) = 0 ⇔ a - b = 0 hoặc a + b - 1 = 0.
TH1 : a – b = 0 ⇔ 9x – 3 = 0 ⇔ x = 1/3 (t.m đkxđ).
⇒ Phương trình (*) vô nghiệm.
Vậy phương trình có nghiệm duy nhất x = 1/3 .
Ví dụ 3: Giải phương trình:
Hướng dẫn giải:
Đkxđ: ∀ x ∈ R.
Phương trình trở thành: t2 - (x+3)t + 3x = 0
⇔ (t-3)(t-x) = 0 ⇔ t = 3 hoặc t = x .
+ t = 3 ⇒ ⇔ x2 = 8 ⇔ x = ±2√2 .
+ t = x ⇒ ⇒ x2 + 1 = x2. Phương trình vô nghiệm.
Vậy phương trình có hai nghiệm .
Bài tập trắc nghiệm tự luyện
Bài 1: Cho phương trình: Nếu đặt
thì t phải lưu ý điều kiện nào?
A. t ∈ R B. t ≤ 1
C. t ≥ 1 D. t ≥ -1 .
Hiển thị đáp ánĐáp án: D
Bài 2: Số nghiệm của phương trình là:
A. 0 B. 2 C. 4 D. 6
Hiển thị đáp ánĐáp án: B
Bài 3: Tập nghiệm của phương trình có bao nhiêu phần tử?
A. 0 B. 2 C. 4 D. 6
Hiển thị đáp ánĐáp án: B
Bài 4: Cho phương trình Khẳng định nào dưới đây đúng?
A. Phương trình có nghiệm âm duy nhất.
B. Phương trình có 2 nghiệm trái dấu.
C. Phương trình có 2 nghiệm âm.
D. Phương trình có hai nghiệm dương.
Hiển thị đáp ánĐáp án: D
Bài 5: Phương trình có tổng các nghiệm bằng:
A. 3/2 B. 1 C. 2/3 D. -3/2 .
Hiển thị đáp ánĐáp án: C
Bài 6: Giải phương trình
Hướng dẫn giải:
Ta có:
Phương trình trở thành: t + t3 - 30 = 0 ⇔ (t-3)(t2 + 3t + 10) = 0 ⇔ t = 3
Thay trả lại biến x ta được:
⇔ x2 - 4x + 31 = 27
⇔ x2 - 4x + 4 = 0
⇔ (x-2)2 = 0
⇔ x = 2.
Vậy phương trình có nghiệm x = 2.
Bài 7: Giải phương trình :
Hướng dẫn giải:
a) Đkxđ:
Phương trình trở thành:
Vậy phương trình có nghiệm x = 1.
b) Đkxđ: x - 1/x ≥ 0 ; x ≠ 0 .
Chia cả hai vế của phương trình cho x ta được:
Pt trở thành: t2 + 2t - 3 = 0 ⇔ (t + 3)(t – 1) = 0 ⇔ t = -3(L) hoặc t = 1 (t/m) .
+ t = 1
Vậy phương trình có hai nghiệm
c) Đkxđ: x ≥ -1 .
Phương trình trở thành : 2a2 - 5ab + 2b2 = 0
⇔ (2a-b) (a-2b) = 0
⇔ a = b/2 hoặc a = 2b
+ a = b/2 ⇔
⇔ x2 - x + 1 = 4(x+1) ⇔ x2 - 5x - 3 = 0 ⇔
+ a = 2b ⇔
⇔ x+1 = 4(x2 - x + 1)⇔ 4x2 -5x + 3 = 0
Phương trình vô nghiệm.
Vậy phương trình có hai nghiệm .
Bài 8: Giải phương trình:
Hướng dẫn giải:
a) Đkxđ: x2 ≤ 15.
Đặt
⇒ a2 - b2 = (25 - x2) - (15 - x2) = 10
Thay trả lại biến x ta được:
Vậy phương trình có hai nghiệm
b)
Đkxđ: x ≥ 1.
Đặt
⇒ u3 + v2 = 2 - x + x - 1 = 1(*)
Mà theo đề bài ta có u + v = 1 ⇒ v = 1 – u
Thay v = 1 – u vào (*) ta được: u3 + (1 – u)2 = 1
⇔ u3 + u2 – 2u + 1 = 1
⇔ u3 + u2 – 2u = 0
⇔ u(u2 + u – 2) = 0
⇔ u(u – 1)(u + 2) = 0
⇔ u = 0 hoặc u = 1 hoặc u = -2.
+ u = 0 ⇒ x = 2 (t.m)
+ u = 1 ⇒ x = 1 (t.m)
+ u = -2 ⇒ x = 10 (t.m)
Vậy phương trình có ba nghiệm x = 1; x = 2 và x = 10.
c)
Đkxđ: ∀x ∈ R.
Đặt
⇒ a3 - b3 = 2
⇒ (a – b)(a2 + b2 + ab) = 2 (*)
Phương trình trở thành: a2 + b2 + ab = 1 (**)
Thay vào (*) ta được: (a – b).1 = 2 ⇒ a – b = 2 ⇒ a = 2 + b
Thay a = 2 + b vào (**) ta được:
⇔ 3b2 + 6b + 3 = 0
⇔ 3(b + 1)2 = 0
⇔ b = -1
⇒ ⇔ x = 0.
Thử lại x = 0 là nghiệm của phương trình.
Vậy phương trình có nghiệm x = 0.
Bài 9: Giải phương trình:
Hướng dẫn giải:
Đkxđ: x ≥ 1 .
Đặt
Khi đó
Phương trình trở thành:
a + b = 1 + ab ⇔ ab + 1 – a – b = 0 ⇔ (a – 1)(b – 1) = 0 ⇔ a = 1 hoặc b = 1
+ a = 1 ⇔ √(x-1) = 1 ⇔ x = 2.
+ b = 1 ⇔
⇔ x3 + x2 + x = 0
⇔ x(x2 + x + 1) = 0
⇔ x = 0 (không t.m đkxđ).
Vậy phương trình có nghiệm x = 2.
Bài 10: Giải phương trình:
Hướng dẫn giải:
Đkxđ: -18/5 ≤ x > 64/5 .
Đặt
⇒ a4 + b4 = 18 - 5x + 64 + 5x = 82(*)
Phương trình trở thành: a + b = 4 (**)
⇒ a2 + b2 = (a+b)2 - 2ab = 16 - 2ab
⇒ a4 + b4 = (a2 + b2)2 - 2a2b2 = (16-2ab)2 - 2a2b2= 2a2b2 - 64ab + 256
Hay 2a2b2 - 64ab + 256 = 82
⇔ a2b2 - 64ab + 256 = 82
⇔ 2a2b2 - 32ab + 87 = 0
⇔ (ab – 3)(ab – 29) = 0
⇔ ab = 3 hoặc ab = 29.
+ ab = 3.
Từ (**) ⇒ a = 4 – b.
Thay vào ab = 3 ⇒ (4 – b)b = 3 ⇔ b2 – 4b + 3 = 0 ⇔ (b – 1)(b – 3) = 0 ⇔
Nếu a = 3; b = 1 ⇒ ⇒ x =
Nếu a = 1; b = 3 ⇒ ⇒ x =
Thử lại cả hai đều là nghiệm của phương trình.
+ Nếu ab = 29
Từ (**)⇒ a = 4 – b.
Thay vào ab = 29 ⇒ (4 – b)b= 29 ⇔ b2 – 4b + 29 = 0.
Phương trình vô nghiệm.
Vậy phương trình có hai nghiệm x = 63/5 và x = -17/5
Bài tập tự luyện
Bài 1. Giải các phương trình
a) x2+2x+2x2+4x+1=1;
b) x2+3x+6+2x2-1=3x+1.
Bài 2. Số nghiệm của các phương trình sau:
a) x2-5=5-x;
b) 2(x2-3x+2)=3x3+8;
c) 4x2+3(x2-x)x+1=2(x3+1).
Bài 3. Bạn Nam tiến hành giải phương trình x2+2x+2x-1=3x2+4x+1 ra hai nghiệm là x=1+52 và x=1-52. Bạn kết luận “Phương trình có hai nghiệm”. Hãy kiểm tra xem bạn Nam giải phương trình chính xác hay không?
Bài 4. Tổng các nghiệm của hai phương trình là x+1+x2-4x+1=3x và 2x+3+x+1=3x+22x2+5x+3.
Bài 5. Giải phương trình (2x+7)2x+7=x2+9x+7.
(199k) Xem Khóa học Toán 9 KNTTXem Khóa học Toán 9 CDXem Khóa học Toán 9 CTST
Xem thêm các dạng bài tập Toán lớp 9 có đáp án và lời giải chi tiết khác:
👉 Giải bài nhanh với AI Hay:Mục lục các Chuyên đề Toán lớp 9:
- Chuyên đề Đại Số 9
- Chuyên đề: Căn bậc hai
- Chuyên đề: Hàm số bậc nhất
- Chuyên đề: Hệ hai phương trình bậc nhất hai ẩn
- Chuyên đề: Phương trình bậc hai một ẩn số
- Chuyên đề Hình Học 9
- Chuyên đề: Hệ thức lượng trong tam giác vuông
- Chuyên đề: Đường tròn
- Chuyên đề: Góc với đường tròn
- Chuyên đề: Hình Trụ - Hình Nón - Hình Cầu
- HOT 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k)
Tủ sách VIETJACK luyện thi vào 10 cho 2k11 (2026):
- Bộ 50 đề thi vào 10 Toán, Văn, Anh 2026(250 trang - từ 99k/1 cuốn)
- Cấp tốc 7,8,9+ Toán Văn Anh thi vào 10 (400 trang -từ 119k)
- Giải mã đề thi vào 10 theo đề Hà Nội, Tp. Hồ Chí Minh (300 trang - từ 99k/1 cuốn)
- Hơn 20.000 câu trắc nghiệm Toán,Văn, Anh lớp 9 có đáp án
TÀI LIỆU CLC DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9
+ Bộ giáo án, bài giảng powerpoint, đề thi file word có đáp án 2025 tại https://tailieugiaovien.com.vn/
+ Hỗ trợ zalo: VietJack Official
+ Tổng đài hỗ trợ đăng ký : 084 283 45 85
Đề thi vào 10 các sở Hà Nội, Tp. Hồ Chí Minh..
( 45 tài liệu )
Đề thi giữa kì, cuối kì 9
( 120 tài liệu )
Bài giảng Powerpoint Văn, Sử, Địa 9....
( 36 tài liệu )
Giáo án word 9
( 76 tài liệu )
Chuyên đề dạy thêm Toán, Lí, Hóa ...9
( 77 tài liệu )
Đề thi HSG 9
( 9 tài liệu )
xem tất cảĐã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
Trang trước Trang sau Giải bài tập lớp 9 sách mới các môn học- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều
Từ khóa » đặt ẩn Phụ T
-
Cách Giải Phương Trình Bằng Phương Pháp đặt ẩn Phụ Cực Hay
-
Phương Pháp đặt ẩn Phụ Phương Trình Vô Tỉ - O₂ Education
-
Một Số Cách đặt ẩn Phụ để Giải Phương Trình Vô Tỷ - Tài Liệu Text
-
Giải Hệ Phương Trình Bằng Cách đặt ẩn Phụ Và Bài Tập Vận Dụng
-
Giải Bằng Phương Pháp đặt ẩn Phụ - Giáo Án, Bài Giảng
-
Giải Phương Trình Vô Tỉ Bằng Phương Pháp đặt ẩn Phụ
-
Kĩ Thuật đặt ẩn Phụ Giải Phương Trình Và Bất Phương Trình Chứa Căn
-
TOÁN 10 - DÙNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ GIẢI ... - YouTube
-
Giải Phương Trình Bằng Phương Pháp đặt ẩn Phụ | 7scv
-
Bài 4: Phương Trình Mũ - Phương Pháp đặt ẩn Phụ
-
Phương Pháp đặt ẩn Phụ Giải Bất Phương Trình Logarit
-
Giải Phương Trình Mũ Bằng Phương Pháp đặt ẩn Phụ
-
Bí Kíp Giải Phương Trình Mũ Bằng Phương Pháp đặt ẩn Phụ
-
Phương Pháp đặt ẩn Phụ Trong Phương Trình Mũ Cực Hay - Haylamdo