Cách Loại Nghiệm, Hợp Nghiệm, Gộp Nghiệm Phương Trình Lượng ...
Có thể bạn quan tâm
- Sổ tay toán lý hóa 12 chỉ từ 29k/cuốn
Bài viết Cách loại nghiệm, hợp nghiệm, gộp nghiệm phương trình lượng giác với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách loại nghiệm, hợp nghiệm, gộp nghiệm phương trình lượng giác.
- Cách giải và ví dụ minh họa bài tập Cách loại nghiệm, hợp nghiệm, gộp nghiệm phương trình lượng giác
- Bài tập vận dụng Cách loại nghiệm, hợp nghiệm, gộp nghiệm phương trình lượng giác
- Bài tập tự luyện Cách loại nghiệm, hợp nghiệm, gộp nghiệm phương trình lượng giác
Cách loại nghiệm, hợp nghiệm, gộp nghiệm phương trình lượng giác cực hay
A. Phương pháp giải & Ví dụ
Quảng cáoPhương pháp 1: Biểu diễn các nghiệm và điều kiện lên đưòng tròn lượng giác. Ta loại đi những điểm biểu diễn của nghiệm mà trùng với điểm biểu diễn của điều kiện.
Với cách này chúng ta cần ghi nhớ
♦ Điểm biểu diễn cung α và α+k2π,k ∈ Z là trùng nhau
♦ Để biểu diễn cung α+k2π/n lên đường tròn lượng giác ta cho k nhận n giá trị (thường chọn k = 0, 1, 2,…,n – 1)) nên ta có được n điểm phân biệt cách đều nhau trên đường tròn tạo thành một đa giác đều n cạnh nội tiếp đường tròn.
Phương pháp 2: Sử dụng phương trình nghiệm nguyên
Giả sử ta cần đối chiếu hai họ nghiệm , trong đó m, n ∈ Z đã biết, còn k, l ∈ Z là các chỉ số chạy.
Ta xét phương trình :
Với a,b,c là các số nguyên.
Trong trường hợp này ta quy về giải phương trình nghiệm nguyên
ax + by = c (1)
Để giải phương trình (1) ta cần chú ý kết quả sau:
♦ Phương trình (1) có nghiệm ⇔ d = (a,b) là ước của c
♦ Nếu phương trình (1) có nghiệm (xo,yo) thì (1) có vô số nghiệm
Quảng cáoPhương pháp 3: Thử trực tiếp
Phương pháp này là ta đi giải phương trình tìm nghiệm rồi thay nghiệm vào điều kiện để kiểm tra.
Ví dụ minh họa
Bài 1: Giải phương trình:cot3x = cotx
PT ⇔ cos3x.sinx - sin3x.cosx = 0 ⇔ sin2x = 0 ⇔ x = (k π)/2,k ∈ Z.
Biểu diễn các nghiệm của hệ phương trình điều kiện và nghiệm của phương trình lên vòng tròn lượng giác ta được:
Cách 1: Biểu diễn các điểm cuối của cung kπ/3 ta có các điểm A1, A2, A3, A4, A5, A6.
Biểu diễn các điểm cuối của cung nπ/2 ta có các điểm B1, B2, B3, B4.
Ta thấy A1 ≡ B1, A4 ≡ B3 .
Vậy nghiệm của phương trình đã cho là: x= π/2 + mπ .
Cách 2:
Do đó ta cần loại những giá trị n chẵn.
Vậy nghiệm của phương trình là: x= π/2 + mπ .
Bài 2: Giải phương trình: cot4x.cot7x = 1
Vì 22n-14m là số chẵn còn 7 là số lẻ nên phương trình này vô nghiệm.
Vậy nghiệm của phương trình đã cho là:
Quảng cáoB. Bài tập vận dụng
Bài 1: Giải phương trình: |sinx| = cos2x.
Lời giải:
Với sinx ≥ 0 (*) thì phương trình đã cho tương đương với
Dễ thấy nghiệm (2) không thỏa (*)
Biểu diễn nghiệm (1) lên đường tròn lượng giác ta được các điểm A1, A2 , A3. Trong đó chỉ có hai điểm A1, A2 nằm phía trên Ox.
Hai điểm này ứng với các cung x=π/6+k2 π,x=5π/6+ k2 π.
Với sinx < 0 (**) thì phương trình đã cho tương đương với
Dễ thấy (3) không thỏa (**)
Biểu diễn (4) trên đường tròn lượng giác ta được các điểm B1, B2, B3. Trong đó chỉ có hai điểm B2,B3 nằm dưới Ox (sinx < 0)
Hai điểm đó ứng với cung: x = (-π)/6 + k2 π, x = -5π/6 + k2 π .
Vậy nghiệm của phương trình đã cho là: x = ±π/6 + k π, (k ∈ Z).
Bài 2: Giải phương trình: cos3x.tan4x = sin5x.
Lời giải:
Điều kiện: cos4x ≠ 0
Phương trình
Bài 3: Giải phương trình:
Lời giải:
Giải pt (2) ta có các nghiệm:
Vì các nghiệm của phương trình phải thỏa điều kiện (1) nên ta tìm cách biểu diễn các nghiệm qua sinx.
Quảng cáoBài 4: Giải phương trình: tanx + cotx = 2.
Lời giải:
Biểu diễn các điểm trên vòng tròn lượng giác:
Bài 5: Giải phương trình:
Lời giải:
C. Bài tập tự luyện
Bài 1. Tìm các họ nghiệm của phương trình cos2x – sinx = 0.
Bài 2. Hợp các họ nghiệm sau:
a) x=π3+k2πx=π3+lπ k,l∈ℤ;
b) x=2π3+kπx=2π3+kπ2k∈ℤ;
c) x=kπx=π2+kπx=π6+k2πk∈ℤ.
Bài 3. Hợp các họ nghiệm sau: x=π6+kπ2x=π6+lπ4 k,l∈ℤ.
Bài 4. Hợp nghiệm của hệ sau: x=kπ3x=2π3+lπk,l∈ℤ.
Bài 5. Hợp các họ nghiệm sau:
a) x=kπx=π2+lπk∈ℤ;
b) x=k2πx=π2+kπx=−π2+kπk∈ℤ;
c) x=3π4+k2πx=−π4+k2πk∈ℤ.
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Dạng 5: Phương trình lượng giác đối xứng, phản đối xứng
- Trắc nghiệm phương trình lượng giác đối xứng, phản đối xứng
- Dạng 6: Cách giải các phương trình lượng giác đặc biệt
- Trắc nghiệm giải các phương trình lượng giác đặc biệt
- Dạng 7: Tìm nghiệm của phương trình lượng giác thỏa mãn điều kiện
- Trắc nghiệm tìm nghiệm của phương trình lượng giác thỏa mãn điều kiện
- Trắc nghiệm phương pháp loại nghiệm, hợp nghiệm trong phương trình lượng giác
- Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
- Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 10 (từ 99k )
- Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 11 (từ 99k )
- 30 đề DGNL Bách Khoa, DHQG Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7) (từ 119k )
ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11
Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Tổng đài hỗ trợ đăng ký : 084 283 45 85
Từ khóa » Hình Tròn Lượng Giác Lớp 11
-
Đường Tròn Lượng Giác Lớp 11-Những Kiến Thức Cơ Bản Không Thể ...
-
Vòng Tròn Lượng Giác
-
Đường Tròn Lượng Giác Lớp 11-Những Kiến Thức Cơ ... - Blog Thú Vị
-
Công Thức Lượng Giác Lớp 11 Hay Nhất - TopLoigiai
-
Đường Tròn Lượng Giác Lớp 11?
-
Cách Dùng đường Tròn Lượng Giác Lớp 11 “phá đảo” đề Thi Vật Lí Cực ...
-
Đường Tròn Lượng Giác - Một Số Kết Quả Cần Nhớ - Thayphu
-
Đường Tròn Lượng Giác Lớp 11
-
Vòng Tròn Lượng Giác Cơ Bản Và Hướng Dẫn Sử Dụng Chi Tiết
-
Bảng Công Thức Lượng Giác Lớp 9, Lớp 10, Lớp 11 Chính Xác 100%
-
Hướng Dẫn Sử Dụng đường Tròn Lượng Giác - YouTube
-
Kĩ Năng Tổng Hợp Và Loại Nghiệm Bằng đường Tròn Lượng Giác