Cách Tìm điểm đối Xứng Của Một điểm Qua đường Thẳng Cực Hay

Cách tìm điểm đối xứng của một điểm qua đường thẳng (cực hay)
  • Siêu sale sách Toán - Văn - Anh Vietjack 15-12 trên Shopee mall
Trang trước Trang sau

Bài viết Cách tìm điểm đối xứng của một điểm qua đường thẳng với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm điểm đối xứng của một điểm qua đường thẳng.

  • Cách giải bài tập tìm điểm đối xứng của một điểm qua đường thẳng
  • Ví dụ minh họa bài tập tìm điểm đối xứng của một điểm qua đường thẳng

Cách tìm điểm đối xứng của một điểm qua đường thẳng (cực hay)

A. Phương pháp giải

Quảng cáo

Bài toán: Cho đường thẳng d: ax + by + c = 0 và điểm A. Tìm điểm B là điểm đối xứng với A qua d.

- Bước 1: Tìm điểm H là hình chiếu vuông góc của A lên d.

+ Bước 1.1: Gọi tọa độ điểm H(xH; yH).

Vì điểm H thuộc d nên : axH + byH + c = 0 (1).

+ Bước 1.2: Do AH vuông góc d nên AH là VTPT của d.

AH(xH - xA; yH - yA) và n(a;b) cùng phương

⇒ b(xH - xA) - a(yH - yA)= 0 (2)

+ Bước 1.3: giải hệ(1) và (2) ta được tọa độ điểm H.

- Bước 2: H là trung điểm của AB. Từ đó xác định điểm B

B. Ví dụ minh họa

Ví dụ 1: Cho đường thẳng d: x - y = 0 và điểm M(1; 3). Tìm hình chiếu của M trên d?

A. (1; 3) B. (2; 2) C. ( 3; -1) D. (4; -1)

Lời giải

+ Gọi H(a; b) là hình chiếu của M trên d.

+ Do H thuộc d nên a - b = 0 (1)

+ Ta có: MH(a - 1; b - 3).

Đường thẳng MH vuông góc d nên (MH) ⃗ cùng phương nd(1; -1)

Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ⇔ -a + 1 = b - 3 hay a + b = 4 (2)

+ Từ (1) và (2) ta có hệ : Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay

⇒ Tọa độ điểm H(2; 2).

Chọn B.

Quảng cáo

Ví dụ 2: Cho đường thẳng d: x + 2y + 4 = 0 và điểm M(1; 3). Gọi M’ (x; y) là điểm đối xứng với M qua d. Tính 2x - y?

A. 1 B. 2 C. 0 D. -1

Lời giải

+ Gọi H(a; b) là hình chiếu của M trên d.

+ Do H thuộc d nên a + 2b + 4 = 0 (1)

+ Ta có: (MH) ⃗(a - 1; b - 3).

Đường thẳng MH vuông góc d nên MH cùng phương nd(1;2)

Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ⇔ 2a - 2 = b - 3 hay 2a - b = -1 (2)

+ Từ (1) và (2) ta có hệ : Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay

⇒ Tọa độ điểm H(-1,2; -1,4).

+ Gọi M’đối xứng với M qua d thì H là trung điểm MM’ nên tọa độ điểm M’:

Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay

Vậy M’(-3,4; - 5,8) ⇒ 2x - y = -1

Chọn D.

Ví dụ 3: Cho đường thẳng d: 2x- y= 0 và điểm M(1 ; 0). Gọi M’ (x; y) là điểm đối xứng với M qua d. Tính 4x + 3y?

A. 1 B. 2 C. 0 D. -1

Lời giải

+ Gọi H(a ; b) là hình chiếu của M trên d.

+ Do H thuộc d nên 2a- b= 0 (1)

+ Ta có: MH(a - 1; b).

Đường thẳng MH vuông góc d nên MH cùng phương nd(2; -1)

Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ⇔ -a + 1 = 2b hay a + 2b = 1 (2)

+ Từ (1) và (2) ta có hệ : Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay

⇒ Tọa độ điểm H(0,2; 0,4).

+ Gọi M’đối xứng với M qua d thì H là trung điểm MM’ nên tọa độ điểm M’:

Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay

Vậy M’(-0,6; 0,8) ⇒ 4x + 3y = 0

Chọn C.

Ví dụ 4: Cho đường thẳng d: Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay = 1 và điểm A(2; 0). Tìm điểm đối xứng với điểm A qua d?

A. (2; -1) B. (-2; -1) C. (-1; 1) D. (-1; 3)

Lời giải

Thay tọa độ điểm A vào phương trình đường thẳng d ta được :

Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay = 1

⇒ Điểm A thuộc đường thẳng d nên điểm đối xứng với điểm A qua đường thẳng d là chính nó.

Chọn C.

Quảng cáo

Ví dụ 5: Cho đường thẳng (d): x + y - 3 = 0 và điểm M(2; 1) thuộc (d). Tập hợp những điểm A( x; y) sao cho M là hình chiếu của A trên d là đường thẳng nào?

A. x + y - 4 = 0 B. x + y - 1 = 0 C. x - y - 1 = 0 D. x - y + 3 = 0

Lời giải

+ Đường thẳng (d) có VTPT n( 1; 1).

+ Vecto MA( x - 2; y - 1).

Do M là hình chiếu của A trên d nên MA vuông góc d

⇒ Hai vecto MAn cùng phương

Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ⇔ x - 2 = y - 1 hay x - y - 1 = 0

Vậy tập hợp những điểm A sao cho M là hình chiếu của A trên d là đường thẳng: ∆: x- y- 1= 0

Chọn C.

Ví dụ 6. Cho tam giác OBC có O(0; 0) ; B( 0; 2) và C(-2; 0). Gọi G là trọng tâm tam giác OBC. Tìm điểm G’ đối xứng với G qua BC?

A. G’( - Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ;- Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ) B. G’( Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ; - Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ) C. G’( Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ; Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ) D. G’( - Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ; Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay )

Lời giải

+ ta có: OB(0; 2); OC( -2; 0)

⇒ OB= 2; OC= 2 và OB.OC = 0.(-2) + 2.0 = 0

⇒ OB vuông góc OC và OB= OC

⇒ Tam giác OBC vuông góc tại O.

+ Do G là trọng tâm tam giác OBC nên tọa độ điểm G:

Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ⇒ G(- Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ; Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay )

+ Gọi M là trung điểm của BC. Do tam giác OBC là vuông cân tại O nên đường trung tuyến OM đồng thời là đường cao nên OM vuông góc BC tại M.

⇒ G’ đối xứng với G qua BC nên M là trung điểm của GG’.

- M là trung điểm BC nên tọa độ điểm M: Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ⇒ M(-1; 1)

- M là trung điểm GG’nên tọa độ điểm G’ là:

Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ⇒ G’( - Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ; Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay )

⇒ Vậy tọa độ điểm G’( - Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ; Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay )

Chọn D.

Quảng cáo

Ví dụ 7: Cho đường thẳng d: x + 4y + 4 = 0 và điểm M(1; 2). Gọi M’ (x; y) là điểm đối xứng với M qua d. Tìm M’?

A. M’( Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ; - Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ) B. M’( Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ; Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ) C. M’(- Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ; Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ) D. M’(- Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ; - Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay )

Lời giải

+ Gọi H(a; b) là hình chiếu của M trên d.

+ Do H thuộc d nên a + 4b + 4 = 0 (1)

+ Ta có: MH(a - 1; b - 2).

Đường thẳng MH vuông góc d nên MH cùng phương nd(1;4)

Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ⇔ 4a - 4 = b - 2 hay 4a – b = 2 (2)

+ Từ (1) và (2) ta có hệ : Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay

⇒ Tọa độ điểm H(Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ; Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ).

+ Gọi M’ đối xứng với M qua d thì H là trung điểm MM’ nên tọa độ điểm M’:

Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay

Vậy M’(- Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ; - Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay )

Chọn D.

Ví dụ 8: Cho đường thẳng d: x + y - 2 = 0 và điểm M(1 ;0). Gọi M’ (x; y) là điểm đối xứng với M qua d. Tìm tọa độ điểm M’?

A. (0; 2) B. (-2; 1) C. (2; 1) D. (-1; 2)

Lời giải

+ Gọi H(a ; b) là hình chiếu của M trên d.

+ Do H thuộc d nên a+ b- 2= 0 (1)

+ Ta có: MH(a - 1; b).

Đường thẳng MH vuông góc d nên MH cùng phương nd(1 ; 1)

Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ⇔ a - 1 = b hay a - b = 1 (2)

+ Từ (1) và (2) ta có hệ : Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay

⇒ Tọa độ điểm H(1,5; 0,5).

+ Gọi M’đối xứng với M qua d thì H là trung điểm MM’ nên tọa độ điểm M’:

Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay

Vậy M’(2; 1)

Chọn C.

Ví dụ 9: Cho đường thẳng d: Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay = 1 và điểm A(-2; 1). Tìm điểm đối xứng với điểm A qua d?

A. (2; -1) B. (-2; -1) C. (-2; 1) D. (-1; 3)

Lời giải

Thay tọa độ điểm A vào phương trình đường thẳng d ta được :

Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay = 1

⇒ Điểm A thuộc đường thẳng d nên điểm đối xứng với điểm A qua đường thẳng d là chính nó.

Chọn C.

Ví dụ 10: Cho đường thẳng (d): 2x + 3y - 3 = 0 và điểm M(0; 1) thuộc (d). Tập hợp những điểm A( x; y) sao cho M là hình chiếu của A trên d là đường thẳng nào?

A. 2x + 3y - 4 = 0 B. 3x - 2y + 2 = 0 C. 3x - 2y - 1 = 0 D. 2x - 3y + 3 = 0

Lời giải

+ Đường thẳng (d) có VTPT n(2; 3).

+ Vecto MA( x; y - 1).

Do M là hình chiếu của A trên d nên MA vuông góc d

⇒ Hai vecto MAn cùng phương

Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ⇔ 3x = 2y - 2 hay 3x - 2y + 2 = 0

Vậy tập hợp những điểm A sao cho M là hình chiếu của A trên d là đường thẳng: ∆: 3x - 2y + 2 = 0

Chọn B.

Ví dụ 11. Cho tam giác OBC có O(0; 0) ; B( 0; 6) và C(-6; 0). Gọi G là trọng tâm tam giác OBC. Tìm điểm G’ đối xứng với G qua BC?

A. G’( - Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ;- Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ) B. G’( -1; 1) C. G’(-2; 2) D. G’(-4; 4)

Lời giải

+ ta có: OB(0; 6); OC( -6; 0)

⇒ OB= 6; OC= 6 và OB.OC = 0.(-6) + 6.0 = 0

⇒ OB vuông góc OC và OB= OC

⇒ Tam giác OBC vuông góc tại O.

+ Do G là trọng tâm tam giác OBC nên tọa độ điểm G:

Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ⇒ G( -2; 2)

+ Gọi M là trung điểm của BC. Do tam giác OBC là vuông cân tại O nên đường trung tuyến OM đồng thời là đường cao nên OM vuông góc BC tại M.

⇒ G’ đối xứng với G qua BC nên M là trung điểm của GG’.

- M là trung điểm BC nên tọa độ điểm M: Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ⇒ M( - 3; 3)

- M là trung điểm GG’nên tọa độ điểm G’ là:

Cách tìm điểm đối xứng của một điểm qua đường thẳng cực hay ⇒ G’ ( -4; 4)

⇒ Vậy tọa độ điểm G’( - 4; 4)

Chọn D.

Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:

  • Các công thức về phương trình đường thẳng
  • Cách tìm vecto pháp tuyến của đường thẳng
  • Viết phương trình tổng quát của đường thẳng
  • Viết phương trình đoạn chắn của đường thẳng
  • Viết phương trình đường thẳng khi biết hệ số góc
  • Xác định vị trí tương đối của hai đường thẳng
  • Viết phương trình đường trung trực của đoạn thẳng
  • Tìm hình chiếu vuông góc của điểm lên đường thẳng

Lời giải bài tập lớp 10 sách mới:

  • Giải bài tập Lớp 10 Kết nối tri thức
  • Giải bài tập Lớp 10 Chân trời sáng tạo
  • Giải bài tập Lớp 10 Cánh diều
  • Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí

Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):

  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 10 (từ 99k )
  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 11 (từ 99k )
  • 30 đề DGNL Bách Khoa, DHQG Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7) (từ 119k )

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Giáo án, bài giảng powerpoint Văn, Toán, Lí, Hóa....

4.5 (243)

799,000đs

199,000 VNĐ

Đề thi, chuyên đề Cánh diều, Kết nối tri thức, Chân trời sáng tạo...

4.5 (243)

799,000đ

99,000 VNĐ

Sách luyện 30 đề thi thử THPT năm 2025 mới

4.5 (243)

199,000đ

99.000 - 149.000 VNĐ

xem tất cả

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS. Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Trang trước Trang sau phuong-phap-toa-do-trong-mat-phang.jsp Giải bài tập lớp 10 sách mới các môn học
  • Giải Tiếng Anh 10 Global Success
  • Giải Tiếng Anh 10 Friends Global
  • Giải sgk Tiếng Anh 10 iLearn Smart World
  • Giải sgk Tiếng Anh 10 Explore New Worlds
  • Lớp 10 - Kết nối tri thức
  • Soạn văn 10 (hay nhất) - KNTT
  • Soạn văn 10 (ngắn nhất) - KNTT
  • Soạn văn 10 (siêu ngắn) - KNTT
  • Giải sgk Toán 10 - KNTT
  • Giải sgk Vật lí 10 - KNTT
  • Giải sgk Hóa học 10 - KNTT
  • Giải sgk Sinh học 10 - KNTT
  • Giải sgk Địa lí 10 - KNTT
  • Giải sgk Lịch sử 10 - KNTT
  • Giải sgk Kinh tế và Pháp luật 10 - KNTT
  • Giải sgk Tin học 10 - KNTT
  • Giải sgk Công nghệ 10 - KNTT
  • Giải sgk Hoạt động trải nghiệm 10 - KNTT
  • Giải sgk Giáo dục quốc phòng 10 - KNTT
  • Lớp 10 - Chân trời sáng tạo
  • Soạn văn 10 (hay nhất) - CTST
  • Soạn văn 10 (ngắn nhất) - CTST
  • Soạn văn 10 (siêu ngắn) - CTST
  • Giải Toán 10 - CTST
  • Giải sgk Vật lí 10 - CTST
  • Giải sgk Hóa học 10 - CTST
  • Giải sgk Sinh học 10 - CTST
  • Giải sgk Địa lí 10 - CTST
  • Giải sgk Lịch sử 10 - CTST
  • Giải sgk Kinh tế và Pháp luật 10 - CTST
  • Giải sgk Hoạt động trải nghiệm 10 - CTST
  • Lớp 10 - Cánh diều
  • Soạn văn 10 (hay nhất) - Cánh diều
  • Soạn văn 10 (ngắn nhất) - Cánh diều
  • Soạn văn 10 (siêu ngắn) - Cánh diều
  • Giải sgk Toán 10 - Cánh diều
  • Giải sgk Vật lí 10 - Cánh diều
  • Giải sgk Hóa học 10 - Cánh diều
  • Giải sgk Sinh học 10 - Cánh diều
  • Giải sgk Địa lí 10 - Cánh diều
  • Giải sgk Lịch sử 10 - Cánh diều
  • Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
  • Giải sgk Tin học 10 - Cánh diều
  • Giải sgk Công nghệ 10 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
  • Giải sgk Giáo dục quốc phòng 10 - Cánh diều

Từ khóa » đối Xứng Qua đường Thẳng