Cách Tìm điểm đối Xứng Của Một điểm Qua đường Thẳng Cực Hay
Có thể bạn quan tâm
- Siêu sale sách Toán - Văn - Anh Vietjack 15-12 trên Shopee mall
Bài viết Cách tìm điểm đối xứng của một điểm qua đường thẳng với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm điểm đối xứng của một điểm qua đường thẳng.
- Cách giải bài tập tìm điểm đối xứng của một điểm qua đường thẳng
- Ví dụ minh họa bài tập tìm điểm đối xứng của một điểm qua đường thẳng
Cách tìm điểm đối xứng của một điểm qua đường thẳng (cực hay)
A. Phương pháp giải
Quảng cáoBài toán: Cho đường thẳng d: ax + by + c = 0 và điểm A. Tìm điểm B là điểm đối xứng với A qua d.
- Bước 1: Tìm điểm H là hình chiếu vuông góc của A lên d.
+ Bước 1.1: Gọi tọa độ điểm H(xH; yH).
Vì điểm H thuộc d nên : axH + byH + c = 0 (1).
+ Bước 1.2: Do AH vuông góc d nên AH→ là VTPT của d.
⇒ AH→(xH - xA; yH - yA) và n→(a;b) cùng phương
⇒ b(xH - xA) - a(yH - yA)= 0 (2)
+ Bước 1.3: giải hệ(1) và (2) ta được tọa độ điểm H.
- Bước 2: H là trung điểm của AB. Từ đó xác định điểm B
B. Ví dụ minh họa
Ví dụ 1: Cho đường thẳng d: x - y = 0 và điểm M(1; 3). Tìm hình chiếu của M trên d?
A. (1; 3) B. (2; 2) C. ( 3; -1) D. (4; -1)
Lời giải
+ Gọi H(a; b) là hình chiếu của M trên d.
+ Do H thuộc d nên a - b = 0 (1)
+ Ta có: MH→(a - 1; b - 3).
Đường thẳng MH vuông góc d nên (MH) ⃗ cùng phương nd→(1; -1)
⇒ ⇔ -a + 1 = b - 3 hay a + b = 4 (2)
+ Từ (1) và (2) ta có hệ :
⇒ Tọa độ điểm H(2; 2).
Chọn B.
Quảng cáoVí dụ 2: Cho đường thẳng d: x + 2y + 4 = 0 và điểm M(1; 3). Gọi M’ (x; y) là điểm đối xứng với M qua d. Tính 2x - y?
A. 1 B. 2 C. 0 D. -1
Lời giải
+ Gọi H(a; b) là hình chiếu của M trên d.
+ Do H thuộc d nên a + 2b + 4 = 0 (1)
+ Ta có: (MH) ⃗(a - 1; b - 3).
Đường thẳng MH vuông góc d nên MH→ cùng phương nd→(1;2)
⇒ ⇔ 2a - 2 = b - 3 hay 2a - b = -1 (2)
+ Từ (1) và (2) ta có hệ :
⇒ Tọa độ điểm H(-1,2; -1,4).
+ Gọi M’đối xứng với M qua d thì H là trung điểm MM’ nên tọa độ điểm M’:
Vậy M’(-3,4; - 5,8) ⇒ 2x - y = -1
Chọn D.
Ví dụ 3: Cho đường thẳng d: 2x- y= 0 và điểm M(1 ; 0). Gọi M’ (x; y) là điểm đối xứng với M qua d. Tính 4x + 3y?
A. 1 B. 2 C. 0 D. -1
Lời giải
+ Gọi H(a ; b) là hình chiếu của M trên d.
+ Do H thuộc d nên 2a- b= 0 (1)
+ Ta có: MH→(a - 1; b).
Đường thẳng MH vuông góc d nên MH→ cùng phương nd→(2; -1)
⇒ ⇔ -a + 1 = 2b hay a + 2b = 1 (2)
+ Từ (1) và (2) ta có hệ :
⇒ Tọa độ điểm H(0,2; 0,4).
+ Gọi M’đối xứng với M qua d thì H là trung điểm MM’ nên tọa độ điểm M’:
Vậy M’(-0,6; 0,8) ⇒ 4x + 3y = 0
Chọn C.
Ví dụ 4: Cho đường thẳng d: = 1 và điểm A(2; 0). Tìm điểm đối xứng với điểm A qua d?
A. (2; -1) B. (-2; -1) C. (-1; 1) D. (-1; 3)
Lời giải
Thay tọa độ điểm A vào phương trình đường thẳng d ta được :
= 1
⇒ Điểm A thuộc đường thẳng d nên điểm đối xứng với điểm A qua đường thẳng d là chính nó.
Chọn C.
Quảng cáoVí dụ 5: Cho đường thẳng (d): x + y - 3 = 0 và điểm M(2; 1) thuộc (d). Tập hợp những điểm A( x; y) sao cho M là hình chiếu của A trên d là đường thẳng nào?
A. x + y - 4 = 0 B. x + y - 1 = 0 C. x - y - 1 = 0 D. x - y + 3 = 0
Lời giải
+ Đường thẳng (d) có VTPT n→( 1; 1).
+ Vecto MA→( x - 2; y - 1).
Do M là hình chiếu của A trên d nên MA vuông góc d
⇒ Hai vecto MA→ và n→ cùng phương
⇔ ⇔ x - 2 = y - 1 hay x - y - 1 = 0
Vậy tập hợp những điểm A sao cho M là hình chiếu của A trên d là đường thẳng: ∆: x- y- 1= 0
Chọn C.
Ví dụ 6. Cho tam giác OBC có O(0; 0) ; B( 0; 2) và C(-2; 0). Gọi G là trọng tâm tam giác OBC. Tìm điểm G’ đối xứng với G qua BC?
A. G’( - ;- ) B. G’( ; - ) C. G’( ; ) D. G’( - ; )
Lời giải
+ ta có: OB→(0; 2); OC→( -2; 0)
⇒ OB= 2; OC= 2 và OB→.OC→ = 0.(-2) + 2.0 = 0
⇒ OB vuông góc OC và OB= OC
⇒ Tam giác OBC vuông góc tại O.
+ Do G là trọng tâm tam giác OBC nên tọa độ điểm G:
⇒ G(- ; )
+ Gọi M là trung điểm của BC. Do tam giác OBC là vuông cân tại O nên đường trung tuyến OM đồng thời là đường cao nên OM vuông góc BC tại M.
⇒ G’ đối xứng với G qua BC nên M là trung điểm của GG’.
- M là trung điểm BC nên tọa độ điểm M: ⇒ M(-1; 1)
- M là trung điểm GG’nên tọa độ điểm G’ là:
⇒ G’( - ; )
⇒ Vậy tọa độ điểm G’( - ; )
Chọn D.
Quảng cáoVí dụ 7: Cho đường thẳng d: x + 4y + 4 = 0 và điểm M(1; 2). Gọi M’ (x; y) là điểm đối xứng với M qua d. Tìm M’?
A. M’( ; - ) B. M’( ; ) C. M’(- ; ) D. M’(- ; - )
Lời giải
+ Gọi H(a; b) là hình chiếu của M trên d.
+ Do H thuộc d nên a + 4b + 4 = 0 (1)
+ Ta có: MH→(a - 1; b - 2).
Đường thẳng MH vuông góc d nên MH→ cùng phương nd→(1;4)
⇒ ⇔ 4a - 4 = b - 2 hay 4a – b = 2 (2)
+ Từ (1) và (2) ta có hệ :
⇒ Tọa độ điểm H( ; ).
+ Gọi M’ đối xứng với M qua d thì H là trung điểm MM’ nên tọa độ điểm M’:
Vậy M’(- ; - )
Chọn D.
Ví dụ 8: Cho đường thẳng d: x + y - 2 = 0 và điểm M(1 ;0). Gọi M’ (x; y) là điểm đối xứng với M qua d. Tìm tọa độ điểm M’?
A. (0; 2) B. (-2; 1) C. (2; 1) D. (-1; 2)
Lời giải
+ Gọi H(a ; b) là hình chiếu của M trên d.
+ Do H thuộc d nên a+ b- 2= 0 (1)
+ Ta có: MH→(a - 1; b).
Đường thẳng MH vuông góc d nên MH→ cùng phương nd→(1 ; 1)
⇒ ⇔ a - 1 = b hay a - b = 1 (2)
+ Từ (1) và (2) ta có hệ :
⇒ Tọa độ điểm H(1,5; 0,5).
+ Gọi M’đối xứng với M qua d thì H là trung điểm MM’ nên tọa độ điểm M’:
Vậy M’(2; 1)
Chọn C.
Ví dụ 9: Cho đường thẳng d: = 1 và điểm A(-2; 1). Tìm điểm đối xứng với điểm A qua d?
A. (2; -1) B. (-2; -1) C. (-2; 1) D. (-1; 3)
Lời giải
Thay tọa độ điểm A vào phương trình đường thẳng d ta được :
= 1
⇒ Điểm A thuộc đường thẳng d nên điểm đối xứng với điểm A qua đường thẳng d là chính nó.
Chọn C.
Ví dụ 10: Cho đường thẳng (d): 2x + 3y - 3 = 0 và điểm M(0; 1) thuộc (d). Tập hợp những điểm A( x; y) sao cho M là hình chiếu của A trên d là đường thẳng nào?
A. 2x + 3y - 4 = 0 B. 3x - 2y + 2 = 0 C. 3x - 2y - 1 = 0 D. 2x - 3y + 3 = 0
Lời giải
+ Đường thẳng (d) có VTPT n→(2; 3).
+ Vecto MA→( x; y - 1).
Do M là hình chiếu của A trên d nên MA vuông góc d
⇒ Hai vecto MA→ và n→ cùng phương
⇔ ⇔ 3x = 2y - 2 hay 3x - 2y + 2 = 0
Vậy tập hợp những điểm A sao cho M là hình chiếu của A trên d là đường thẳng: ∆: 3x - 2y + 2 = 0
Chọn B.
Ví dụ 11. Cho tam giác OBC có O(0; 0) ; B( 0; 6) và C(-6; 0). Gọi G là trọng tâm tam giác OBC. Tìm điểm G’ đối xứng với G qua BC?
A. G’( - ;- ) B. G’( -1; 1) C. G’(-2; 2) D. G’(-4; 4)
Lời giải
+ ta có: OB→(0; 6); OC→( -6; 0)
⇒ OB= 6; OC= 6 và OB→.OC→ = 0.(-6) + 6.0 = 0
⇒ OB vuông góc OC và OB= OC
⇒ Tam giác OBC vuông góc tại O.
+ Do G là trọng tâm tam giác OBC nên tọa độ điểm G:
⇒ G( -2; 2)
+ Gọi M là trung điểm của BC. Do tam giác OBC là vuông cân tại O nên đường trung tuyến OM đồng thời là đường cao nên OM vuông góc BC tại M.
⇒ G’ đối xứng với G qua BC nên M là trung điểm của GG’.
- M là trung điểm BC nên tọa độ điểm M: ⇒ M( - 3; 3)
- M là trung điểm GG’nên tọa độ điểm G’ là:
⇒ G’ ( -4; 4)
⇒ Vậy tọa độ điểm G’( - 4; 4)
Chọn D.
Xem thêm các dạng bài tập Toán 10 có đáp án hay khác:
- Các công thức về phương trình đường thẳng
- Cách tìm vecto pháp tuyến của đường thẳng
- Viết phương trình tổng quát của đường thẳng
- Viết phương trình đoạn chắn của đường thẳng
- Viết phương trình đường thẳng khi biết hệ số góc
- Xác định vị trí tương đối của hai đường thẳng
- Viết phương trình đường trung trực của đoạn thẳng
- Tìm hình chiếu vuông góc của điểm lên đường thẳng
Lời giải bài tập lớp 10 sách mới:
- Giải bài tập Lớp 10 Kết nối tri thức
- Giải bài tập Lớp 10 Chân trời sáng tạo
- Giải bài tập Lớp 10 Cánh diều
- Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
- Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 10 (từ 99k )
- Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 11 (từ 99k )
- 30 đề DGNL Bách Khoa, DHQG Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7) (từ 119k )
ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10
Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Tổng đài hỗ trợ đăng ký : 084 283 45 85
Từ khóa » đối Xứng Qua đường Thẳng
-
Hai điểm đối Xứng Qua Một đường Thẳng Khi Nào? Hai Hình ... - Lazi
-
[CHUẨN NHẤT] Điểm đối Xứng Là Gì? - TopLoigiai
-
Công Thức Tìm điểm đối Xứng Qua đường Thẳng Hay Và Chi Tiết
-
Lý Thuyết đối Xứng Trục | SGK Toán Lớp 8
-
Cách Tìm điểm đối Xứng Của 1 điểm Qua đường ...
-
Cách Tìm điểm đối Xứng Của 1 điểm Qua đường Thẳng Cực Hay
-
Đối Xứng Trục Là Gì ? Đối Xứng Qua đường Thẳng ? Lý Thuyết, Tính ...
-
Đối Xứng Trục – Wikipedia Tiếng Việt
-
Cách Tìm điểm đối Xứng Của Một điểm Qua đường Thẳng - HayHocHoi
-
Thế Nào Là Hai Hình đối Xứng Qua Một đường Thẳng - Học Tốt
-
Cách Tìm Điểm Đối Xứng Qua Đường Thẳng - .vn
-
Hai điểm Gọi Là đối Xứng Với Nhau Qua đường Thẳng D Nếu D Là ...
-
2 Điểm Đối Xứng Qua Đường Thẳng
-
Lý Thuyết đối Xứng Trục Toán 8