Cách Tìm Giá Trị Nhỏ Nhất, Giá Trị Lớn Nhất Của Biểu Thức Chứa Dấu Giá ...

Vậy cách giải dạng toán tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức có chứa dấu giá trị tuyệt đối như thế nào? chúng ta sẽ cùng tìm hiểu qua bài viết này.

I. Cách tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức chứa dấu trị tuyệt đối

- Tìm GTNN, GTLN của biểu thức chứa dấu trị tuyệt đối thường có 2 dạng sau:

Dạng 1: Dựa vào tính chất |x| ≥ 0.

- Ta biến đổi biểu thức A đã cho về dạng A ≥ a (với a là số đã biết) để suy ra giá trị nhỏ nhất của A là a

- Hoặc, ta biến đổi biểu thức A về dạng A ≤ b (với b là số đã biết) từ đó suy ra giá trị lớn nhất của A là b.

• Dạng 2: Các biểu thức chứa hai hạng tử là hai biểu thức trong dấu giá trị tuyệt đối.

Phương pháp: Sử dụng tính chất, với mọi x, y ∈ Q, ta có:

 |x + y| ≤ |x| + |y|

 |x – y| ≥ |x| - |y|

II. Vận dụng tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức chứa dấu giá trị tuyệt đối

* Bài tập 1: Tìm giá trị nhỏ nhất của biểu thức A = |2x + 2022| + 5

* Lời giải:

- Ta có: A = |2x + 2022| + 5

Vì |2x + 2022| ≥ 0, với mọi x

Suy ra |2x + 2022| + 5 ≥ 0 + 5, ∀ x

Do đó A ≥ 5, ∀ x

Vậy GTNN của A là 5, khi |2x + 2022| = 0,

nghĩa là: 2x + 2022 = 0 ⇒ x = -1011.

* Bài tập 2: Tìm giá trị lớn nhất của biểu thức: B = 2022 - |5x + 15|

* Lời giải:

- Ta có: B = 2022 - |5x + 15|

Vì |5x + 15| ≥ 0, ∀x

⇒ -|5x + 15| ≤ 0, ∀x

⇒ -|5x + 15| + 2022 ≤ 2022, ∀x

⇒ 2022 - |5x + 15| ≤ 2022, ∀x

Suy ra B ≤ 2022, ∀x

Vậy GTLN của B là 2022, khi |5x + 15| = 0,

Tức là 5x + 15 = 0 ⇒ x = -3.

* Bài tập 3: Tìm giá trị nhỏ nhất của biểu thức C = |x – 10| + |x – 2022|

* Lời giải:

- Ta có: C = |x – 10| + |x – 2022|

 = |x – 10| + |-(x – 2022)| (vì |a| = |-a|)

 = |x – 10| + |2022 – x|

Vì |x – 10| + |2022 – x| ≥ |x – 10 + 2022 – x| (theo tính chất ở phần lý thuyết)

Mà |x – 10 + 2022 – x| = |2022 – 10| = |2012| = 2012

Suy ra C ≥ 2012

Vậy GTNN của C là 2012.

* Bài tập 4: Tìm giá trị lớn nhất của biểu thức: D = |x + 2022| - |x – 2018|

* Lời giải:

- Ta có: D = |x + 2022| - |x – 2018| ≤ |x + 2022 – (x – 2018)| (áp dụng tính chất ở phần lý thuyết)

Vì |x + 2022 – (x – 2018)| = |x + 2022 – x + 2018| = |4040| = 4040

Suy ra D ≤ 4040

Vậy GTLN của D là 4040.

* Bài tập 5: Tìm giá trị nhỏ nhất của M = 2|3x - 5| - 1

* Lời giải:

- Ta có: M = 2|3x - 5| - 1

 |3x - 5| ≥ 0, ∀x

 ⇒ 2|3x - 5| ≥ 0, ∀x

Do đó 2|3x - 5| - 1 ≥ -1, ∀x

Vậy GTNN của M = -1 tại 3x - 5 = 0 ⇔ x = 5/3.

* Bài tập 6: Tìm giá trị nhỏ nhất của N = 7 + |3 - x|

* Hướng dẫn:

 N đạt giá trị nhỏ nhất bằng 7 tại x = 3.

* Bài tập 7: Tìm giá trị lớn nhất của K = 15 - 4|x - 3|

* Lời giải:

- Với mọi x ta có: |x - 3| ≥ 0 

 ⇒ -4|x - 3| ≤ 0, ∀x

 ⇒ -4|x - 3| + 15 ≤ 15, ∀x

Vậy giá trị lớn nhất của K = 15 tại -4|x - 3| = 0 ⇔ x = 3.

 * Bài tập 8: Tìm giá trị lớn nhất của biểu thức I = 9 - |3x - 2|

* Hướng dẫn:

 I đạt giá trị lớn nhất bằng 9 tại x = 2/3.

* Bài tập 9: Tìm giá trị nhỏ nhất của biểu thức P = |x + 5| + |x - 3| + 4

* Lời giải:

- Ta có: |x – 3| = |-(x – 3)| = |3 – x| (vì |a| = |-a|)

Khi đó P = |x + 5| + |3 – x| + 4

Mà |x + 5| + |3 - x| ≥ |x + 5 + 3 - x| = |8| = 8

Nên P = |x + 5| + |x - 3| + 4 = |x + 5| + |3 – x| + 4 ≥ 8  + 4 = 12

* Bài tập 10: Tìm giá trị của x và y để biểu thức    có giá trị lớn nhất.

* Lời giải:

Ta có: |3x + 5| ≥ 0, ∀x; |4y + 3| ≥ 0, ∀y

⇒ |3x + 5| + |4y + 3| ≥ 0, ∀x, y

⇒|3x + 5| + |4y + 3| + 9 ≥ 0 + 9 = 9, ∀x, y

 với mọi x,y

Suy ra: Q ≤ 20/3, ∀x, y

Dấu "=" xảy ra khi: 

Vậy Q đạt giá trị lớn nhất bằng 20/3 khi x = -5/3 và y = -3/4.

Từ khóa » Các Bài Toán Về Gtnn Và Gtln Lớp 7