Cách Tìm M để Hàm Số Liên Tục Cực Hay
Có thể bạn quan tâm
Cách tìm m để hàm số liên tục cực hay
A. Phương pháp giải & Ví dụ
Ta sử dụng điều kiện để hàm số liên tục và điều kiện để phương trình có nghiệm để làm các bài toán dạng này.
- Điệu kiện để hàm số liên tục tại x0:
- Điều kiện để hàm số liên tục trên một tập D là f(x) liên tục tại mọi điểm thuộc D.
- Phương trình f(x) = 0 có ít nhất một nghiệm trên D nếu hàm số y = f(x) liên tục trên D và có hai số a, b thuộc D sao cho f(a).f(b) < 0.
Phương trình f(x) = 0 có k nghiệm trên D nếu hàm số y = f(x) liên tục trên D và tồn tại k khoảng rời nhau (ai ; ai+1) (i = 1,2,…,k) nằm trong D sao cho f(ai).f(ai+1) < 0.
Ví dụ minh họa
Bài 1: Chứng minh rằng phương trình sau có ít nhất một nghiệm :
x7 + 3x5 - 1 = 0
Hướng dẫn:
Ta có hàm số f(x) = x7 + 3x5 - 1 liên tục trên R và f(0).f(1) = - 3 < 0
Suy ra phương trinh f(x) = 0 có ít nhất một nghiệm thuộc (0,1).
Bài 2: Chứng minh rằng phương trình sau có ít nhất một nghiệm :
x2sinx + xcosx + 1 = 0
Hướng dẫn:
Ta có hàm số f(x) = x2sinx + xcosx + 1 liên tục trên R và f(0).f(π) = -π < 0. Suy ra phương trinh f(x) = 0 có ít nhất một nghiệm thuộc (0 ; π).
Bài 3: Xác định a, b để các hàm số sau liên tục trên R
Hướng dẫn:
Ta có hàm số đã cho liên tục trên R\{π/2} do các hàm y = sinx và y = ax + b lên tục trên R.
Ta chỉ cần xét tính liên tục của hàm số tại x = π/2.
Vậy a, b là số thực thỏa mãn phương trình thì hàm số đã cho liên tục trên R.
Bài 4: Tìm m để các hàm số sau liên tục trên R
Hướng dẫn:
Hàm số xác định trên R
Với x < 2 ⇒ hàm số liên tục
Với x > 2 ⇒ hàm số liên tục
Với x = 2 ta có
⇔ m = 3
Vậy m = 3 là giá trị cần tìm
Bài 5: Xác định a,b để các hàm số sau liên tục trên R
Hướng dẫn:
Với x ≠ 2 và x ≠ 0 hàm số liên tục.
Để hàm số đã cho liên tục trên R thì hàm số phải liên tục tại x = 2 và x = 0
Vậy a = 1 và b = -1 thì hàm số liên tục trên R
Bài 6: Xác định a để hàm số liên tục trên R.
Hướng dẫn:
Hàm số xác định trên R
Với x < 2 ⇒ hàm số liên tục
Với x > 2 ⇒ hàm số liên tục
Với x = 2 ta có
Hàm số liên tục trên R ⇔ hàm số liên tục tại x = 2
Vậy a = -1, a = 0.5 là những giá trị cần tìm.
Bài 7: Cho hàm số f(x) = x3 – 1000x2 + 0,01 . phương trình f(x) = 0 có nghiệm thuộc khoảng nào trong các khoảng sau đây ?
I. (–1; 0) II. (0; 1) III. (1; 2)
Hướng dẫn:
Ta có hàm số y = f(x) = x3 – 1000x2 + 0,01 là hàm liên tục trên R
f(0) = 0.01 và f(-1) = - 1001 + 0.01 < 0. Nên f(0).(-1) < 0.
Vậy hàm số có nghiệm trong khoảng I
Bài 8: Tìm m để các hàm số sau liên tục trên R
Hướng dẫn:
Với x < 0 ⇒ hàm số liên tục
Với x > 0 ⇒ hàm số liên tục
Với x = 0 ta có
Hàm số liên tục trên R ⇔ hàm số liên tục tại x = 0

B. Bài tập vận dụng
Bài 1: Cho hàm số:
Hàm số đã cho liên tục trên R khi và chỉ khi:
Bài 2: Cho hàm số
Giá trị của m để f(x) liên tục tại x = 2 là:
Bài 3: Cho hàm số:
Tìm b để f(x) liên tục tại x = 3
A. √3 B. - √3 C. (2√3)/3 D. – (2√3)/3
Bài 4: Cho hàm số:
Giá trị nào của m để hàm số đã cho liên tục tại x = -2?
A. 7
B. -7
C. 5
D. 1
Bài 5: Cho hàm số:
Với giá trị nào của a thì hàm số đã cho liên tục tại x = 2?
A. -2
B. -1
C. 1
D. 3
Bài 6: Tìm khẳng định đúng trong các khẳng định sau:
I. f(x) liên tục trên đoạn [a;b] và f(a).f(b) > 0 thì tồn tại ít nhất số c ∈ (a;b) sao cho f(c) = 0
II. f(x) liên tục trên (a;b] và trên [b;c) nhưng không liên tục trên (a;c)
A. Chỉ I đúng B. Chỉ II đúng C. Cả I và II đúng D. Cả I và II sai
Bài 7: Tìm khẳng định đúng trong các khẳng định sau:
I. f(x) liên tục trên đoạn [a;b] và f(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm
II. f(x) không liên tục trên [a;b] và f(a).f(b) ≥ 0 thì phương trình f(x) = 0 vô nghiệm
A. Chỉ I đúng B. Chỉ II đúng C. Cả I và II đúng D. Cả I và II sai
Bài 8: Cho hàm số . Chọn câu đúng trong các câu sau:
(I) f(x) liên tục tại x = 2
(II) f(x) gián đoạn tại x = 2
(III) f(x) liên tục trên đoạn [-2, 2]
A. Chỉ (I) và (III) B. Chỉ (I) C. Chỉ (II) D. Chỉ (II) và (III)
Bài 9: Cho hàm số:
Giá trị của a để f(x) liên tục trên R là:
A. 1 và 2 B. 1 và –1 C. –1 và 2 D. 1 và –2
Bài 10: Cho hàm số:
Với giá trị nào của a thì hàm số f(x) liên tục tại x = - 2?
A. a = -5
B. a = 0
C. a = 5
D. a = 6
Bài 11: Cho hàm số:
Với giá trị nào của a thì hàm số f(x) liên tục tại x = 3?
A. a = 3 B. a = 1/3 C. a = -1/3 C. a = -2
Bài 12: Cho hàm số:
Với giá trị nào của m thì hàm số đã cho liên tục tại x = 2?
A. -2
B. -1
C. 1
D. 3
Bài 13: Cho hàm số:
Tìm a để f(x) liên tục tại x = 0
A. 1 B. –1 C. –2 D. 2
Bài 14: Cho hàm số:
Tìm k để f(x) gián đoạn tại x = 1.
Bài 15: Cho hàm số:
Tìm m để f(x) liên tục trên [0;+∞) là.
A.1/3 B. 1/2 C. 1/6 D. 1
Từ khóa » Tìm M để Hàm Số Liên Tục Tại X=2
-
Cách Tìm M để Hàm Số Liên Tục Cực Hay - Toán Lớp 11
-
Xác định Tham Số để Hàm Số Liên Tục
-
Cách Tìm M để Hàm Số Liên Tục Cực Hay - Toán Lớp 11 - Haylamdo
-
Dạng Tìm Tham Số để Hàm Số Liên Tục – Gián đoạn
-
Tìm A để Hàm Số Sau Liên Tục Tại X = 2 - Selfomy Hỏi Đáp
-
Tìm M để Hàm Số F(x) = X^2
-
Chuyên đề: Hàm Số Liên Tục.
-
Hàm Số Liên Tục Và Các Dạng Bài Tập Từ Cơ Bản Đến Nâng Cao
-
Tìm M để Hàm Số Liên Tục Tại X=2 - Hoc24
-
Tìm M để Hàm Số Liên Tục
-
50 Bài Tập Về Hàm Số Liên Tục (có đáp án 2022) – Toán 11
-
Tìm M để Hàm Số Liên Tục Tại X=xo (PMĐ11 - 84) - PSearch
-
Cách Tìm M để Hàm Số Liên Tục Cực Hay - Toán Lớp 11