Cách Tìm Tiệm Cận Của đồ Thị Hàm Số Cực Hay - Toán Lớp 12
Có thể bạn quan tâm
- Ra mắt Sách 20 đề THPT quốc gia form 2025 toán, văn, anh.... (từ 80k/1 cuốn)
Bài viết Cách tìm tiệm cận của đồ thị hàm số với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm tiệm cận của đồ thị hàm số.
- Cách giải bài tập Tìm tiệm cận của đồ thị hàm số
- Bài tập vận dụng Tìm tiệm cận của đồ thị hàm số
- Bài tập tự luyện Tìm tiệm cận của đồ thị hàm số
Cách tìm tiệm cận của đồ thị hàm số (cực hay)
Bài giảng: Cách tìm tiệm cận của đồ thị hàm số - Cô Nguyễn Phương Anh (Giáo viên VietJack)
A. Phương pháp giải & Ví dụ
Quảng cáo1. Đường tiệm cận ngang
Cho hàm số y = f(x) xác định trên một khoảng vô hạn (là khoảng dạng (a; +∞),(-∞; -b) hoặc (-∞; +∞). Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn
Nhận xét: Như vậy để tìm tiệm cận ngang của đồ thị hàm số ta chỉ cần tính giới hạn của hàm số đó tại vô cực.
2. Đường tiệm cận đứng
Đường thẳng x = x0 được gọi là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn
Ví dụ minh họa
Ví dụ 1: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số sau
Lời giải:
a. Ta có:
là tiệm cận ngang của đồ thị hàm số.
là tiệm cận đứng của đồ thị hàm số.
b. Ta có:
là tiệm cận ngang của đồ thị hàm số.
⇒ Đồ thị hàm số không có tiệm cận đứng
c. Ta có:
⇒ Đồ thị hàm số không có tiệm cận ngang.
⇒ x = 1/2 là tiệm cận đứng của đồ thị hàm số.
Quảng cáo p>Ví dụ 2: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số sau
Lời giải:
a. Ta có:
⇒ y = 1; y = -1 là tiệm cận ngang của đồ thị hàm số.
Đồ thị hàm số không có tiệm cận đứng.
b. Ta có:
⇒ y = 4; y = 2 là tiệm cận ngang của đồ thị hàm số.
⇒ x = -1 là tiệm cận đứng của đồ thị hàm số.
Ví dụ 3: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số sau
a. b.
Lời giải:
a. Đồ thị hàm số không có tiệm cận đứng
⇒ y = 11/2 là tiệm cận ngang của đồ thị hàm số
b. Đồ thị hàm số không có tiệm cận đứng
⇒ y = 1 là tiệm cận ngang của đồ thị hàm số.
Quảng cáoB. Bài tập vận dụng
Câu 1: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Lời giải:
Ta có
⇒ y = -3 là tiệm cận ngang của đồ thị hàm số.
⇒ x = -2 là tiệm cận đứng của đồ thị hàm số.
Câu 2: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Lời giải:
Ta có
⇒ y = 0 là tiệm cận ngang của đồ thị hàm số.
⇒ x = 2 là tiệm cận đứng của đồ thị hàm số.
Câu 3: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Lời giải:
Ta có
⇒ y = 0 là tiệm cận ngang của đồ thị hàm số.
⇒ x = 1; x = 2 là tiệm cận đứng của đồ thị hàm số.
Câu 4: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm
Lời giải:
Ta có
⇒ y = 1/2; y = -1/2 là tiệm cận ngang của đồ thị hàm số.
Câu 5: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Lời giải:
Đồ thị hàm số không có tiệm cận đứng
⇒ y = 0 là tiệm cận ngang của đồ thị hàm số.
Câu 6: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Lời giải:
Ta có:
⇒ y = 0; y = 2 là tiệm cận ngang của đồ thị hàm số.
⇒ x = 1 là tiệm cận đứng của đồ thị hàm số.
Câu 7: Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
Lời giải:
Đồ thị hàm số không có tiệm cận đứng
⇒ y = -1 là tiệm cận ngang của đồ thị hàm số.
Quảng cáoCâu 1: Ta có
⇒ y = -3 là tiệm cận ngang của đồ thị hàm số.
⇒ x = -2 là tiệm cận đứng của đồ thị hàm số.
Câu 2: Ta có
⇒ y = 0 là tiệm cận ngang của đồ thị hàm số.
⇒ x = 2 là tiệm cận đứng của đồ thị hàm số.
Câu 3: Ta có
⇒ y = 0 là tiệm cận ngang của đồ thị hàm số.
⇒ x = 1; x = 2 là tiệm cận đứng của đồ thị hàm số.
Câu 4: Ta có
⇒ y = 1/2; y = -1/2 là tiệm cận ngang của đồ thị hàm số.
Câu 5: Đồ thị hàm số không có tiệm cận đứng
⇒ y = 0 là tiệm cận ngang của đồ thị hàm số.
Câu 6: Ta có:
⇒ y = 0; y = 2 là tiệm cận ngang của đồ thị hàm số.
⇒ x = 1 là tiệm cận đứng của đồ thị hàm số.
Câu 7: Đồ thị hàm số không có tiệm cận đứng
⇒ y = -1 là tiệm cận ngang của đồ thị hàm số.
C. Bài tập tự luyện
Bài 1. Xác định đường tiệm cận đứng và tiệm cận ngang của hàm số: y=2x+1x−2.
Bài 2. Xác định đường tiệm cận đứng và tiệm cận ngang của hàm số: y=x2−x+1x−1.
Bài 3. Xác định đường tiệm cận đứng và tiệm cận ngang của hàm số: y=x2+1x.
Bài 4. Xác định đường tiệm cận đứng và tiệm cận ngang của hàm số: y=x2−3x−4x2−16.
Bài 5. Xác định số đường tiệm cận của hàm số: y=x+14x2+2x+1.
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Trắc nghiệm tìm tiệm cận của đồ thị hàm số
- Dạng 2: Tìm tham số m để hàm số có tiệm cận
- Trắc nghiệm tìm tham số m để hàm số có tiệm cận
- Dạng 3: Các bài toán liên quan đến tiệm cận của hàm số
- Trắc nghiệm về tiệm cận của hàm số
- Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Sổ tay toán lý hóa 12 (29k/ 1 cuốn)
- Tổng ôn tốt nghiệp 12 toán, sử, địa, kinh tế pháp luật.... (80k/1 cuốn)
- 30 đề Đánh giá năng lực đại học quốc gia Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7)
ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12
Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Từ khóa » Tiệm Cận đồ Thị Hàm Số Lớp 12
-
Tiệm Cận Của đồ Thị Hàm Số Lớp 12 - Toán Thầy Định
-
Đường Tiệm Cận Của Hàm Số: Lý Thuyết & Bài Tập (Kèm Tài Liệu)
-
Đường Tiệm Cận - Toán 12 - Thầy Nguyễn Quốc Chí - YouTube
-
Đường Tiệm Cận Của đồ Thị Hàm Số, Trắc Nghiệm Toán Học Lớp 12
-
Toán 12 đường Tiệm Cận: Lý Thuyết Kèm Bài Tập Trắc Nghiệm - VUIHOC
-
Lý Thuyết đường Tiệm Cận | SGK Toán Lớp 12
-
Cách Tìm Tiệm Cận đứng Của đồ Thị Hàm Số Chính Xác 100%
-
Bài Giảng đường Tiệm Cận Của đồ Thị Hàm Số
-
Các Dạng Bài Toán Tiệm Cận Của đồ Thị Hàm Số Chứa Tham Số
-
Bài Tập Tìm Tiệm Cận Của đồ Thị Hàm Số Dựa Vào Bảng Biến Thiên Có ...
-
[SGK Scan] Đường Tiệm Cận Của đồ Thị Hàm Số - Sách Giáo Khoa
-
Soạn Giải Tích 12 Bài 4: Đường Tiệm Cận | Học Cùng
-
Bài Tập Trắc Nghiệm Tìm Tiệm Cận Của đồ Thị Hàm Số Cực Hay
-
Chuyên đề đường Tiệm Cận Của đồ Thị Hàm Số