Cách Tính Chu Kì Tuần Hoàn Của Hàm Số Lượng Giác Cực Hay

Cách tính chu kì tuần hoàn của hàm số lượng giác cực hay
  • Sổ tay toán lý hóa 12 chỉ từ 29k/cuốn
Trang trước Trang sau

Bài viết Cách tính chu kì tuần hoàn của hàm số lượng giác với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tính chu kì tuần hoàn của hàm số lượng giác.

  • Cách giải bài tập tính chu kì tuần hoàn của hàm số lượng giác
  • Ví dụ minh họa bài tập tính chu kì tuần hoàn của hàm số lượng giác
  • Bài tập vận dụng tính chu kì tuần hoàn của hàm số lượng giác
  • Bài tập tự luyện tính chu kì tuần hoàn của hàm số lượng giác

Cách tính chu kì tuần hoàn của hàm số lượng giác cực hay

A. Phương pháp giải

Quảng cáo

+ Hàm số y= f(x) xác định trên tập hợp D được gọi là hàm số tuần hoàn nếu có số T ≠ 0 sao cho với mọi x ∈ D ta có x+T ∈ D;x-T ∈ D và f(x+T)=f(x).

Nếu có số T dương nhỏ nhất thỏa mãn các điều kiện trên thì hàm số đó được goi là một hàm số tuần hoàn với chu kì T.

+ Cách tìm chu kì của hàm số lượng giác ( nếu có ):

Hàm số y = k.sin(ax+b) có chu kì là T= 2π/|a|

Hàm số y= k.cos(ax+ b) có chu kì là T= 2π/|a|

Hàm số y= k.tan( ax+ b) có chu kì là T= π/|a|

Hàm số y= k.cot (ax+ b ) có chu kì là: T= π/|a|

Hàm số y= f(x) có chu kì T1; hàm số T2 có chu kì T2 thì chu kì của hàm số y= a.f(x)+ b.g(x) là T = bội chung nhỏ nhất của T1 và T2

B. Ví dụ minh họa

Ví dụ 1: Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?

A. y= sin x

B. y = x+ 1

C. y=x2 .

D. y=(x-1)/(x+2) .

Lời giải:

Chọn A

Tập xác định của hàm số: D= R

Với mọi x ∈ D , k ∈ Z ta có x-2kπ ∈ D và x+2kπ ∈ D , sin(x+2kπ)=sinx .

Vậy y=sinx là hàm số tuần hoàn.

Quảng cáo

Ví dụ 2: Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?

A. y= sinx- x

B. y= cosx

C. y= x.sin x

D.y=(x2+1)/x

Lời giải:

Chọn B

Tập xác định của hàm số: D=R .

mọi x ∈ D , k ∈ Z ta có x-2kπ ∈ D và x+2kπ ∈ D,cos(x+2kπ)=cosx .

Vậy y= cosx là hàm số tuần hoàn.

Ví dụ 3: Chu kỳ của hàm số y= cosx là:

A. 2kπ

B. 2π/3

C. π

D. 2π

Lời giải:

Chọn D

Tập xác định của hàm số: D= R

Với mọi x ∈ D;k ∈ Z, ta có x-2kπ ∈ D và x+2kπ ∈ D thỏa mãn: cos⁡( x+k2π)=cosx

Vậy y= cosx là hàm số tuần hoàn với chu kì (ứng với k= 1) là số dương nhỏ nhất thỏa mãn cos⁡( x+k2π)=cosx

Ví dụ 4: Chu kỳ của hàm số y= tanx là:

A.2π

B.π/4

C.kπ,k ∈ Z

D.π

Lời giải:

Chọn D

Tập xác định của hàm số:D= R\{π/2+kπ,k ∈ Z }

Với mọi x ∈ D;k ∈ Z ta có x-kπ ∈ D;x+kπ ∈ D và tan (x+kπ)=tanx

Vậy là hàm số tuần hoàn với chu kì π (ứng với k= 1) là số dương nhỏ nhất thỏa mãn tan (x+kπ)=tanx

Quảng cáo

Ví dụ 5. Hàm số y= 2tan ( 2x-100) có chu kì là?

A. T= π/4

B. T= π/2

C. 2π

D. π

Lời giai

Hàm số y= k.tan( ax+ b) có chu kì là: T= π/|a|

Áp dụng: Hàm số y= 2tan( 2x - 100) có chu kì là: T= π/2

Chọn B.

Ví dụ 6. Hàm số y = - π.sin⁡( 4x-2998) là

A. T= π/2

B. T= π/4

C.2π

D. π

Lời giải:

Hàm số y= k.sin(ax+ b) có chu kì là: T= 2π/|a| .

Chu kì của hàm số: y = - π.sin⁡( 4x-2998) là: T= 2π/4= π/2

Chọn A

Ví dụ 7. Tìm chu kì của hàm số y= 10π cos⁡(π/2-20 x)?

A. 20 π

B. 10π

C. π/20

D. π/10

Lời giải

Hàm số y= k.cos(ax+ b) có chu kì là: T= 2π/|a| .

Chu kì của hàm số: y = 20 π.cos⁡(π/2-20 x) là: T= 2π/|-20| = π/10

Chọn D.

Ví dụ 8. Tìm chu kì của hàm số y= ( 1)/2π cot⁡(π/10+10 x)?

A. π

B. 10π

C. π/20

D. π/10

Lời giải

Hàm số y= k.cot(ax+ b) có chu kì là: T= π/|a| .

Chu kì của hàm số: y = ( 1)/2π cot⁡(π/10+10 x) là: T= π/|10| = π/10

Quảng cáo

Ví dụ 9. Tìm chu kì của hàm số y= 2sin2x+1

A. 1

B. 2π

C. π

D. 4π

Lời giải:

Ta có: y= 2sin2x+1 = 1- cos2x +1= 2- cos2x

⇒ Chu kì của hàm số đã cho là: T= 2π/2= π

Chọn C.

Ví dụ 10. Tìm chu kì của hàm số: y=sin⁡( 2x- π)+ 1/2 tan⁡( x+ π)

A. π

B. 2π

C. π/2

D. Đáp án khác

Lời giải

Hàm số y= f(x) = sin( 2x- π) có chu kì T1= 2π/2= π.

Hàm số y= g(x)= 1/2 tan⁡( x+ π) có chu kì T2= π/1= π

⇒ Chu kì của hàm số đã cho là: T= π.

Chọn A.

Ví dụ 11. Tìm chu kì của hàm số y= 1/2 tan⁡( x- π/2)+ 1/10 cot⁡( x/2- π)

A. π

B. 2π

C. π/2

D. Đáp án khác

Lời giải:

Ta có: chu kì của hàm số y= f(x)= 1/2 tan⁡( x- π/2) là T1= π/1= π

Chu kì của hàm số y=g(x)= 1/10 cot⁡( x/2- π) là T2= π/(1/2)= 2π

Suy ra chu kì của hàm số đã cho là: T=2π

Chọn B.

Ví dụ 12. Tìm chu kì của hàm số y= 〖sin〗^2 x+cos⁡( 2x+ π/3)

A.π/2

B. 2π

C. 4π

D. π

Lời giải:

Ta có: y= sin2 x+cos⁡( 2x+ π/3)= (1-cos2x)/2+cos⁡( 2x+ π/3)

chu kì của hàm số y= f(x)= (1-cos2x)/2 là T1= 2π/2= π

Chu kì của hàm số y= g(x)= cos⁡( 2x+ π/3) là T2= 2π/2=π

⇒ chu kì của hàm số đã cho là: T= π

Chọn D

Ví dụ 13. Tìm chu kì của hàm số y= 2sin2x. sin4x

A.π/2

B. 2π

C. π

D. 4π

Lời giải:

Ta có: y= 2. sin2x. sin4x = cos 6x+ cos2x

Chu kì của hàm số y = cos6x là T1= 2π/6= π/3

Chu kì của hàm số y= cos2x là T2= 2π/2= π

⇒ chu kì của hàm số đã cho là: T= π

Chọn C

Ví dụ 14. Tìm chu kì của hàm số y= sin3x + cos2x

A. 2π

B. π

C. 4π

D. Đáp án khác

Lời giải:

Ta có y= sin3x + cos2x = 1/4 (3sinx-sin3x) + cos2x

Chu kì của hàm số y= 3/4 sinx là T1= 2π

Chu kì của hàm số y =(- 1)/4 sin3x là T2=2π/3

Chu kì của hàm số y= cos2 là T3= 2π/2= π

⇒ Chu kì của hàm số đã cho là: T= 2π

Chọn A.

C. Bài tập vận dụng

Câu 1:Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?

A. y= x. cosx

B.y= x. tanx

C. y= tanx

D.y=1/x .

Lời giải:

Chọn C

Xét hàm số y= tanx:

Tập xác định của hàm số: D=R\{π/2+kπ,k ∈ Z } .

Với mọi x ∈ D ,k ∈ Z ta có x-kπ ∈ D và x+kπ ∈ D ,tan(x+kπ)=tanx .

Vậy y= tanx là hàm số tuần hoàn.

Câu 2:Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?

A.y=sinx/x

B.y= tanx+ x

C.y=x2+1

D. y= cotx

Lời giải:

Chọn D

Xét hàm số y= cotx:

Tập xác định: D=R\{kπ,k ∈ Z } .

Với mọi x ∈ D ,k ∈ Z ta có x-kπ ∈ D và x+kπ ∈ D ,cot(x+kπ)=cotx

Vậy y= cot x là hàm tuần hoàn.

Câu 3:Chu kỳ của hàm số y= sinx là:

A.k2π,k ∈ Z

B.π/2

C.π

D.2π

Lời giải:

Chọn D

Tập xác định của hàm số:D=R\{kπ,k ∈ Z } .

Với mọi x ∈ D;k ∈ Z ta có x-k2π ∈ D và x+k2π ∈ D; sin⁡(x+k2π2)=sinx

Vậy y= sinx là hàm số tuần hoàn với chu kì 2π (ứng với k=1 ) là số dương nhỏ nhất thỏa mãn sin⁡(x+k2π2)=sinx.

Câu 4:Chu kỳ của hàm số y= cot x là:

A.2π

B.π/2

C.π

D.kπ,k ∈ Z .

Lời giải:

Chọn C

Tập xác định của hàm số: D=R\{kπ,k ∈ Z } .

Với mọi x ∈ D;k ∈ Z ta có x-kπ ∈ D và x+ kπ ∈ D; cot(x+kπ)=cotx .

Vậy y=cotx là hàm số tuần hoàn với chu kì π (ứng với k= 1) là số dương nhỏ nhất thỏa cot(x+kπ)=cotx.

Câu 5:Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?

A. y= sinx

B. y= x+ sinx

C. y= x.cosx

D.y=sinx/x .

Lời giải:

Chọn A

Hàm số y= x+sinx không tuần hoàn. Thật vậy:

Tập xác định D=R.

Giả sử f(x+T)=f(x) với ∀ x ∈ D.

Cách tính chu kì tuần hoàn của hàm số lượng giác cực hay

Điều này trái với định nghĩa là T > 0.

Vậy hàm số không phải là hàm số tuần hoàn.

+ Tương tự chứng minh cho các hàm số y= x.cosx và không tuần hoàn.

+ Hàm số y= sin x là hàm số tuần hoàn với chu kì T=2π

Câu 6:Tìm chu kì T của hàm số y= sin( π/10-5x).

A. T= 2π/5

B. T= 5π/2

C.T=π/2 .

D.C.T=π/8 .

Lời giải:

Chọn A

Hàm số y= k.sin(ax+b) tuần hoàn với chu kì .

Áp dụng: Hàm số y= sin( π/10-5x) tuần hoàn với chu kì T= 2π/|- 5| = 2π/5.

Câu 7:Tìm chu kì T của hàm số y=cos⁡( x/2+2198π).

A. T= 4π

B.T=2π

C. T= π/2

D.π .

Lời giải:

Chọn A

Hàm số y= cos(ax+ b) tuần hoàn với chu kì .

Áp dụng: Hàm số y=cos⁡( x/2+2198π) tuần hoàn với chu kì T= 2π/(1/2)=4π.

Câu 8:Tìm chu kì T của hàm số y= 1/3 cos⁡( 50πx-50 π).

A. T= 1/25

B. T= 50

C. T= 25

D. T= 1/50

Lời giải:

Chọn A

Hàm số y= 1/3 cos⁡( 50πx-50 π) tuần hoàn với chu kì T= 2π/(50 π)= 1/25.

Câu 9:Tìm chu kì T của hàm số y=3tan⁡(3π x+3π).

A.T=π/3 .

B.T=4/3 .

C.T=2π/3 .

D.T=1/3 .

Lời giải:

Chọn D

Hàm số y= k.tan( ax+ b) tuần hoàn với chu kì T= π/|a|

Áp dụng: Hàm số y=3 tan⁡( 3π x+3π) tuần hoàn với chu kì T= π/3π= 1/3

Câu 10:Tìm chu kì T của hàm số y= tan x+ cot 3x.

A. T= 4π

B. T= π

C. T= 3π

D.T= π/3 .

Lời giải:

Chọn B

Hàm số y= cot(ax+b) tuần hoàn với chu kì T= π/|a|.

Áp dụng: Hàm số y= cot3x tuần hoàn với chu kì T1= π/3 .

Hàm số y= tanx tuần hoàn với chu kì T2= π .

Suy ra hàm số y= tanx+cot3x tuần hoàn với chu kì T= π

Nhận xét: T là bội chung nhỏ nhất của T1 và T2 .

Câu 11:Tìm chu kì T của hàm số: y= cos⁡(2x/3+ π)+2cot⁡x

A. T= 4π

B. T= π

C. T= 3π

D.T= π/3 .

Lời giải:

Chọn C

Hàm số y= cos(2x/3+ π) tuần hoàn với chu kì T1=2π/(2/3)=3π .

Hàm số y= 2cot x tuần hoàn với chu kì T2= π.

Suy ra y= cos⁡(2x/3+ π)+2cot⁡x hàm số tuần hoàn với chu kì 3π .

Câu 12:Tìm chu kì T của hàm số y=sin(x/2)-tan(2x+π/4 ) .

A. T= 4π

B. T= π

C. T= 3π

D.T= π/3 .

Lời giải:

Chọn A

Hàm số y=sin(x/2) tuần hoàn với chu kì T1=4π.

Hàm số y=-tan(2x+π/4 ) tuần hoàn với chu kì T2= π/2 .

Suy ra hàm số y=sin(x/2)-tan(2x+π/4 ) tuần hoàn với chu kì T=4π.

Câu 13:Tìm chu kì T của hàm số y= 2cos2x + 4π.

A. T= 4π

B. T=2π

C. T= π

D. T= 2

Lời giải:

Chọn C

Ta có y= 2cos2x + 4π = cos2x + 1+ 4π.

Suy ra hàm số tuần hoàn với chu kì T= π.

Câu 14:Hàm số nào sau đây có chu kì khác π?

A.y=sin(-2x+π/3)

B.y=cos2(x+π/4)

C. y= tan(-2x+ 100).

D. y=cosx. sinx

Lời giải:

Chọn C

Ta xét các phương án:

+ Phương án A. Chu kì của hàm số là T= 2π/|- 2| = π

+ Phương án B. Chu kì của hàm số là T= 2π/|2| = π

+ Phương án C: Hàm số có chu kì T= π/|-2| = π/2 .

+ Phương án D. Ta có: y=cosx. sinx= 1/2.sin⁡2x

Hàm số có chu kì là: T= 2π/|2| = π

Vậy hàm số y = tan(- 2x+ 100) có chu kì khác π.

Câu 15:Hàm số nào sau đây có chu kì khác 2π?

A. y= cos3x

B.sin(x/2)cos(x/2) .

C. y= sin2(x+ 2)

D.cos2(x/2+1) .

Lời giải:

Chọn C

+ Hàm số y= cos3x=1/4(cos3x+3cosx)

Do y= cos 3x có chu kì T1 = 2π/3 và y= 3cosx có chu kì là T2 = 2π

⇒ hàm số y= cos3x có chu kì là 2π ( là bội chung nhỏ nhất của T1 và T2 ).

+Hàm số y=sin(x/2)cos(x/2)=1/2sinx có chu kì là T= 2π/1= 2π.

+ Hàm số y= sin2(x+ 2)=1/2-1/2cos(2x+4) có chu kì là T= 2π/2 = π

+ Hàm số y=cos2(x/2+1)= 1/2+1/2cos(x+2) có chu kì là T= 2π.

Câu 16:Hai hàm số nào sau đây có chu kì khác nhau?

A. y= 2cosx và y= cot(x/2) .

B. y= - 3sinx và y= tan2x

C. y= sin(x/2) và y= cos(x/2) .

D. y= 2tan (2x -10) và y= cot( 10- 2x)

Lời giải:

Chọn B

+ Hai hàm số y= 2cosx và y= cot(x/2) có cùng chu kì là 2π.

+ Hai hàm số y= - 3sinx có chu kì là 2π, hàm số y= tan2x có chu kì là π/2 .

+ Hai hàm số y= sin(x/2) và y= cos(x/2) có cùng chu kì là 4π.

+ Hai hàm số y= 2.tan(2x-10) và y= cot (10- 2x) có cùng chu kì là π/2 .

D. Bài tập tự luyện

Bài 1. Tìm chu kỳ tuần hoàn của hàm số f(x) = sin2x+5π6.

Bài 2. Xét tính tuần hoàn và tìm chu kì cơ sở của hàm số y = sin2x.

Bài 3. Xét tính tuần hoàn và tìm chu kì cơ sở của hàm số sau: y = sinx + sin3x.

Bài 4. Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?

A. y = sinx – x.

B. y = cosx.

C. y = x.sin x.

D. y = x2+1x.

Bài 5. Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?

A. y = sin x.

B. y = x + 1.

C. y = x2.

D. y = x−1x+2.

  • Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí

Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):

  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 10 (từ 99k )
  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 11 (từ 99k )
  • 30 đề DGNL Bách Khoa, DHQG Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7) (từ 119k )

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Giáo án, bài giảng powerpoint Văn, Toán, Lí, Hóa....

4.5 (243)

799,000đs

199,000 VNĐ

Đề thi, chuyên đề Cánh diều, Kết nối tri thức, Chân trời sáng tạo...

4.5 (243)

799,000đ

99,000 VNĐ

Sách luyện 30 đề thi thử THPT năm 2025 mới

4.5 (243)

199,000đ

99.000 - 149.000 VNĐ

xem tất cả

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS. Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Trang trước Trang sau Giải bài tập lớp 11 sách mới các môn học
  • Giải Tiếng Anh 11 Global Success
  • Giải sgk Tiếng Anh 11 Smart World
  • Giải sgk Tiếng Anh 11 Friends Global
  • Lớp 11 - Kết nối tri thức
  • Soạn văn 11 (hay nhất) - KNTT
  • Soạn văn 11 (ngắn nhất) - KNTT
  • Giải sgk Toán 11 - KNTT
  • Giải sgk Vật Lí 11 - KNTT
  • Giải sgk Hóa học 11 - KNTT
  • Giải sgk Sinh học 11 - KNTT
  • Giải sgk Lịch Sử 11 - KNTT
  • Giải sgk Địa Lí 11 - KNTT
  • Giải sgk Giáo dục KTPL 11 - KNTT
  • Giải sgk Tin học 11 - KNTT
  • Giải sgk Công nghệ 11 - KNTT
  • Giải sgk Hoạt động trải nghiệm 11 - KNTT
  • Giải sgk Giáo dục quốc phòng 11 - KNTT
  • Giải sgk Âm nhạc 11 - KNTT
  • Lớp 11 - Chân trời sáng tạo
  • Soạn văn 11 (hay nhất) - CTST
  • Soạn văn 11 (ngắn nhất) - CTST
  • Giải sgk Toán 11 - CTST
  • Giải sgk Vật Lí 11 - CTST
  • Giải sgk Hóa học 11 - CTST
  • Giải sgk Sinh học 11 - CTST
  • Giải sgk Lịch Sử 11 - CTST
  • Giải sgk Địa Lí 11 - CTST
  • Giải sgk Giáo dục KTPL 11 - CTST
  • Giải sgk Hoạt động trải nghiệm 11 - CTST
  • Giải sgk Âm nhạc 11 - CTST
  • Lớp 11 - Cánh diều
  • Soạn văn 11 Cánh diều (hay nhất)
  • Soạn văn 11 Cánh diều (ngắn nhất)
  • Giải sgk Toán 11 - Cánh diều
  • Giải sgk Vật Lí 11 - Cánh diều
  • Giải sgk Hóa học 11 - Cánh diều
  • Giải sgk Sinh học 11 - Cánh diều
  • Giải sgk Lịch Sử 11 - Cánh diều
  • Giải sgk Địa Lí 11 - Cánh diều
  • Giải sgk Giáo dục KTPL 11 - Cánh diều
  • Giải sgk Tin học 11 - Cánh diều
  • Giải sgk Công nghệ 11 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 11 - Cánh diều
  • Giải sgk Giáo dục quốc phòng 11 - Cánh diều
  • Giải sgk Âm nhạc 11 - Cánh diều

Từ khóa » Chu Kỳ Của Hàm Số Y = Cos X Là