Cách Tính độ Dài Vecto, Khoảng Cách Giữa Hai điểm Trong Hệ Tọa độ ...

Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)
  • Siêu sale sách Toán - Văn - Anh Vietjack 25-12 trên Shopee mall
Trang trước Trang sau

Bài viết Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ.

  • Cách giải bài tập tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ
  • Bài tập tự luyện tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ

Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)

1. Phương pháp giải

Độ dài vecto

- Định nghĩa: Mỗi vecto đều có một độ dài, đó là khoảng cách giữa điểm đầu và điểm cuối của vecto đó. Độ dài của vecto Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết) được ký hiệu là |Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)|.

Do đó đối với các vectơ Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết) ta có:

Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)

- Phương pháp: muốn tính độ dài vectơ, ta tính độ dài cách giữa điểm đầu và điểm cuối của vectơ.

- Trong hệ tọa độ: Cho Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)

Độ dài vectơ Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)

Khoảng cách giữa hai điểm trong hệ tọa độ

Áp dụng công thức sau

Trong mặt phẳng tọa độ, khoảng cách giữa hai điểm M(xM;yM) và N(xN;yN) là

Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)

2. Bài tập tự luyện

Ví dụ minh họa hoặc bài tập có giải

Ví dụ 1: Trong mặt phẳng tọa độ Oxy, cho hai vectơ Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)=(4;1) và Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)=(1;4). Tính độ dài vectơ Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)

Hướng dẫn giải:

Ta có:

Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)

Ví dụ 2: Trong mặt phẳng tọa độ Oxy, tính khoảng cách giữa hai điểm M(1; -2) và N (-3; 4).

Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)

Hướng dẫn giải:

Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)

Đáp án D

Ví dụ 3: Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 4), B(3; 2), C(5; 4). Chu vi P của tam giác đã cho.

Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)

Hướng dẫn giải:

Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)

Đáp án B

Ví dụ 4: Trong mặt phẳng tọa độ Oxy, cho bốn điểm A(-1; 1), B(0; 2), C(3; 1) và D(0; -2). Khẳng định nào sau đây là đúng?

A. Tứ giác ABCD là hình bình hành

B. Tứ giác ABCD là hình thoi

C. Tứ giác ABCD là hình thang cân

D. Tứ giác ABCD không nội tiếp được đường tròn

Hướng dẫn giải:

Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)

Từ (1) và (2) suy ra ABCD là hình thang cân (hình thang có hai đường chéo bằng nhau là hình thang cân).

Đáp án C

Ví dụ 5: Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1;3) và B(4;2). Tìm tọa độ điểm C thuộc trục hoành sao cho C cách đều hai điểm A và B.

Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)

Hướng dẫn giải:

Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)

Đáp án B

Bài tập bổ sung

Bài 1. Trong mặt phẳng toạ độ Oxy, tính khoảng cách giữa hai điểm M(2; 3) và N(–3; 5).

Bài 2. Trong mặt phẳng tọa độ Oxy, cho vectơ u→=2;3. Tính độ dài vectơ u→.

Bài 3. Trong mặt phẳng tọa độ Oxy, cho vectơ u→=3;5 và v→=3;1. Tính độ dài vectơ u→+v→ và u→−v→.

Bài 4. Trong mặt phẳng toạ độ Oxy cho tam giác ABC có A(1; 2) ; B(–3; 3) và C (5; –4). Tính chu vi của P của tam giác đã cho.

Bài 5. Trong mặt phẳng tọa độ Oxy, cho bốn điểm A(1; 4), B(5; 4), C(6; 1) và D(0; 1). Chứng minh tứ giác ABCD là hình thang cân.

Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có đáp án hay khác khác:

  • Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết)
  • Cách chứng minh Hai vecto vuông góc (cực hay, chi tiết)
  • Tìm m để góc giữa hai vecto bằng một số cho trước cực hay (45 độ, góc nhọn, góc tù)
  • Cách giải bài tập về Định lí Cô-sin trong tam giác (cực hay, chi tiết)

Lời giải bài tập lớp 10 sách mới:

  • Giải bài tập Lớp 10 Kết nối tri thức
  • Giải bài tập Lớp 10 Chân trời sáng tạo
  • Giải bài tập Lớp 10 Cánh diều
  • Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí

Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):

  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 10 (từ 99k )
  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 11 (từ 99k )
  • 30 đề DGNL Bách Khoa, DHQG Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7) (từ 119k )

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Giáo án, bài giảng powerpoint Văn, Toán, Lí, Hóa....

4.5 (243)

799,000đs

199,000 VNĐ

Đề thi, chuyên đề Cánh diều, Kết nối tri thức, Chân trời sáng tạo...

4.5 (243)

799,000đ

99,000 VNĐ

Sách luyện 30 đề thi thử THPT năm 2025 mới

4.5 (243)

199,000đ

99.000 - 149.000 VNĐ

xem tất cả

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS. Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Trang trước Trang sau tich-vo-huong-cua-hai-vecto-va-ung-dung.jsp Giải bài tập lớp 10 sách mới các môn học
  • Giải Tiếng Anh 10 Global Success
  • Giải Tiếng Anh 10 Friends Global
  • Giải sgk Tiếng Anh 10 iLearn Smart World
  • Giải sgk Tiếng Anh 10 Explore New Worlds
  • Lớp 10 - Kết nối tri thức
  • Soạn văn 10 (hay nhất) - KNTT
  • Soạn văn 10 (ngắn nhất) - KNTT
  • Soạn văn 10 (siêu ngắn) - KNTT
  • Giải sgk Toán 10 - KNTT
  • Giải sgk Vật lí 10 - KNTT
  • Giải sgk Hóa học 10 - KNTT
  • Giải sgk Sinh học 10 - KNTT
  • Giải sgk Địa lí 10 - KNTT
  • Giải sgk Lịch sử 10 - KNTT
  • Giải sgk Kinh tế và Pháp luật 10 - KNTT
  • Giải sgk Tin học 10 - KNTT
  • Giải sgk Công nghệ 10 - KNTT
  • Giải sgk Hoạt động trải nghiệm 10 - KNTT
  • Giải sgk Giáo dục quốc phòng 10 - KNTT
  • Lớp 10 - Chân trời sáng tạo
  • Soạn văn 10 (hay nhất) - CTST
  • Soạn văn 10 (ngắn nhất) - CTST
  • Soạn văn 10 (siêu ngắn) - CTST
  • Giải Toán 10 - CTST
  • Giải sgk Vật lí 10 - CTST
  • Giải sgk Hóa học 10 - CTST
  • Giải sgk Sinh học 10 - CTST
  • Giải sgk Địa lí 10 - CTST
  • Giải sgk Lịch sử 10 - CTST
  • Giải sgk Kinh tế và Pháp luật 10 - CTST
  • Giải sgk Hoạt động trải nghiệm 10 - CTST
  • Lớp 10 - Cánh diều
  • Soạn văn 10 (hay nhất) - Cánh diều
  • Soạn văn 10 (ngắn nhất) - Cánh diều
  • Soạn văn 10 (siêu ngắn) - Cánh diều
  • Giải sgk Toán 10 - Cánh diều
  • Giải sgk Vật lí 10 - Cánh diều
  • Giải sgk Hóa học 10 - Cánh diều
  • Giải sgk Sinh học 10 - Cánh diều
  • Giải sgk Địa lí 10 - Cánh diều
  • Giải sgk Lịch sử 10 - Cánh diều
  • Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
  • Giải sgk Tin học 10 - Cánh diều
  • Giải sgk Công nghệ 10 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
  • Giải sgk Giáo dục quốc phòng 10 - Cánh diều

Từ khóa » độ Dài Của Vectơ