Cách Tính độ Dài Vecto
Có thể bạn quan tâm
Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết
- A. Phương pháp giải
- B. Ví dụ minh họa
Cách tính độ dài Vecto được tính như thế nào? Để giúp bạn đọc có thể giải đáp được những thắc mắc này, VnDoc.com xin gửi tới bạn đọc bài viết Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ cực hay, chi tiết được VnDoc sưu tầm và đăng tải. Mời các bạn học sinh cùng tải về tham khảo để chuẩn bị tốt cho bài giảng sắp tới nhé.
- Bộ đề thi học kì 2 môn Toán lớp 10 - Có đáp án
A. Phương pháp giải
Độ dài vecto
- Định nghĩa: Mỗi vecto đều có một độ dài, đó là khoảng cách giữa điểm đầu và điểm cuối của vecto đó. Độ dài của vecto \(\overrightarrow{\mathrm{a}}\) được ký hiệu là \(|\overrightarrow{\mathrm{a}}|\).
Do đó đối với các vectơ \(\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{PQ}}.........\) ta có:
\(|\overrightarrow{A B}|=A B=B A ;|\overrightarrow{P Q}|=P Q=Q P\)
- Phương pháp: muốn tính độ dài vectơ, ta tính độ dài cách giữa điểm đầu và điểm cuối của vectơ.
- Trong hệ tọa độ: Cho \(\overrightarrow{\mathrm{a}}=\left(\mathrm{a}_{1} ; \mathrm{a}_{2}\right)\)
Độ dài vectơ \(\text { a là }|\vec{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}}\)
Khoảng cách giữa hai điểm trong hệ tọa độ
Áp dụng công thức sau
Trong mặt phẳng tọa độ, khoảng cách giữa hai điểm M(xM;yM) và N(xN;yN) là
\(\mathrm{MN}=|\overrightarrow{\mathrm{MN}}|=\sqrt{\left(\mathrm{x}_{\mathrm{N}}-\mathrm{x}_{\mathrm{M}}\right)^{2}+\left(\mathrm{y}_{\mathrm{N}}-\mathrm{y}_{\mathrm{M}}\right)^{2}}\)
B. Ví dụ minh họa
Ví dụ 1: Trong mặt phẳng tọa độ Oxy, cho hai vectơ \(\overrightarrow{\mathrm{v}}\)=(4;1) và \(\overrightarrow{\mathrm{v}}\)=(1;4). Tính độ dài vectơ \(\vec{u}+\vec{v} ; \vec{u}-\vec{v}\)
Hướng dẫn giải:
Ta có:
\(\begin{array}{l} \vec{u}+\vec{v}=(4+1 ; 1+4)=(5 ; 5) \\ \Rightarrow|\vec{u}+\vec{v}|=\sqrt{5^{2}+5^{2}} \\ \quad=\sqrt{50} \\ \quad=5 \sqrt{2} \\ \vec{u}-\vec{v}=(4-1 ; 1-4) \\ =(3 ;-3) \\ \Rightarrow|\vec{u}-\vec{v}|=\sqrt{3^{2}+(-3)^{2}} \\ \quad=\sqrt{18} \\ \quad=3 \sqrt{2} \end{array}\)
Ví dụ 2: Trong mặt phẳng tọa độ Oxy, tính khoảng cách giữa hai điểm M(1; -2) và N (-3; 4).
\(A. \mathrm{MN}=4\)
\(B. M N=6\)
\(C. \mathrm{MN}=3 \sqrt{6}\)
\(D. \mathrm{MN}=2 \sqrt{13}\)
Hướng dẫn giải:
Áp dụng công thức tính khoảng cách giữa hai điểm:
Ta có
\(\begin{array}{c} \mathrm{MN}=\sqrt{\left(x_{N}-x_{M}\right)^{2}+\left(y_{N}-y_{M}\right)^{2}} \\ \qquad \begin{array}{c} =\sqrt{(-3-1)^{2}+(4-(-2))^{2}} \\ =\sqrt{52}=2 \sqrt{13} \end{array} \end{array}\)
Đáp án D
Ví dụ 3: Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 4), B(3; 2), C(5; 4). Chu vi P của tam giác đã cho.
\(A. P=4+2\sqrt{2}\)
\(B. P=4+4\sqrt{2}\)
\(C.P = 8 + 8\sqrt{2}\)
\(D. P=2+2\sqrt{2}\)
Hướng dẫn giải:
Ta có:
\(A B=\sqrt{(3-1)^{2}+(2-4)^{2}}=\sqrt{8}=2 \sqrt{2}\)
\(\mathrm{AC}=\sqrt{(5-1)^{2}+(4-4)^{2}}=\sqrt{4^{2}}=4\)
\(\mathrm{BC}=\sqrt{(5-3)^{2}+(4-2)^{2}}=\sqrt{8}=2 \sqrt{2}\)
Chu vi tam giác ABC là:
\(\mathrm{P}=\mathrm{AB}+\mathrm{AC}+\mathrm{BC}=2 \sqrt{2}+4+2 \sqrt{2}=4+4 \sqrt{2}\)
Đáp án B
Ví dụ 4: Trong mặt phẳng tọa độ Oxy, cho bốn điểm A(-1; 1), B(0; 2), C(3; 1) và D(0; -2). Khẳng định nào sau đây là đúng?
A. Tứ giác ABCD là hình bình hành
B. Tứ giác ABCD là hình thoi
C. Tứ giác ABCD là hình thang cân
D. Tứ giác ABCD không nội tiếp được đường tròn
Hướng dẫn giải:
Từ (1) và (2) suy ra ABCD là hình thang cân (hình thang có hai đường chéo bằng nhau là hình thang cân).
Đáp án C
Ví dụ 5: Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1;3) và B(4;2). Tìm tọa độ điểm C thuộc trục hoành sao cho C cách đều hai điểm A và B.
Hướng dẫn giải:
Đáp án B
Ví dụ 6: Cho tam giác ABC vuông tại A có AB= √5 ,AC=2√5.
a) Độ dài vectơ \(\overrightarrow{AB}\) + \(\overrightarrow{AC}\) bằng:
A. √5
B. 5√5
C. 25
D. 5
b) Độ dài vectơ \(\overrightarrow{AC}\) - \(\overrightarrow{AB}\) bằng:
A. √5
B. 15
C. 5
D. 2
Ví dụ 7: Cho tam giác ABC. Vectơ \(\overrightarrow{AB}\)+\(\overrightarrow{AC}\) có giá chứa đường thẳng nào sau đây?
A. Tia phân giác của góc A
B. Đường cao hạ từ đỉnh A của tam giác ABC
C. Đường trung tuyến qua A của tam giác ABC
D. Đường thẳng BC
Ví dụ 8: Cho tam giác ABC vuông tại A và AB = 3, AC = 8. Vectơ \(\overrightarrow{CB}\)+\(\overrightarrow{AB}\) có độ dài là:
A. 4
B. 5
C. 10
D.8
Ví dụ 9: Cho hình thang có hai đáy là AB = 3a và CD = 6a. Khi đó | \(\overrightarrow{AB}\)+\(\overrightarrow{CD}\) | bằng bao nhiêu?
A. 9a
B. 3a
C. – 3a
D. 0
Ví dụ 10: Gọi A’, B’, C’ lần lượt là trung điểm của các cạnh BC, CA, AB của tam giác ABC. Tính |
Từ khóa » Cách Tính độ Dài Vectơ Lớp 12
-
Công Thức Tính độ Dài Vectơ, Tính Khoảng Cách Giữa 2 điểm Và Công ...
-
Công Thức Tính Tích Vô Hướng Của Hai Vecto Trong Không Gian Cực Hay
-
Cách Tính độ Dài Vecto, Khoảng Cách Giữa Hai điểm ...
-
Tìm Hiểu Cách Tính độ Dài Vectơ, Khoảng Cách Giữa Hai điểm Trong ...
-
Cách Tính độ Dài Vecto, Khoảng Cách Giữa Hai điểm ... - Haylamdo
-
Top 9 Công Thức Tính độ Dài Vectơ Lớp 12 2022
-
Công Thức Tính độ Dài Véc Tơ ( Overrightarrow U = ( (a;b;c) ) )
-
Tích Vô Hướng, Tích Có Hướng Của Hai Vectơ - Ứng Dụng
-
Công Thức Tính độ Dài Vectơ, Tính Khoảng Cách Giữa ... - MarvelVietnam
-
Cách Tính độ Dài Vecto, Khoảng Cách Giữa Hai ...
-
Công Thức Tính độ Dài Vectơ, Tính Khoảng Cách Giữa 2 điểm Và Công ...
-
Tính độ Dài đoạn Thẳng, Vectơ Trong Không Gian Toán 12
-
Cách Tính độ Dài Vectơ - MarvelVietnam
-
Hệ Tọa độ Trong Không Gian - Các Dạng Toán Cơ Bản