Cách Tính Lũy Thừa Nhanh Nhất - TopLoigiai
Có thể bạn quan tâm
Cách tính lũy thừa nhanh nhất
Bình phương và nhân là thuật toán dùng để tính nhanh lũy thừa với cơ số tự nhiên. Thuật toán thường được áp dụng trong trường hợp cần tính lũy thừa và lấy dư theo một module nào đó.
Công thức truy hồi
Ý tưởng trên dẫn đến công thức sau:
Độ phức tạp:
Do n giảm theo lũy thừa của 2 nên độ phức tạp của thuật toán là O(log n)
Cài đặt
Vì kết quả lũy thừa thường rất lớn nên ta sẽ tính phần dư khi chia cho MM. Khi cài đặt cần chú ý tránh tràn số.
Cài đặt đệ quy
Cài đặt không đệ quy
Cùng Top lời giải bổ sung thêm kiến thức về lũy thừa nhé
Mục lục nội dung I. Khái niệm lũy thừa là gì? II. Kiến thức cần nhớ về lũy thừaIII. Lũy thừa của một số hữu tỉI. Khái niệm lũy thừa là gì?
Lũy thừa là một phép toán hai ngôi của toán học thực hiện trên hai số a và n, kết quả của phép toán lũy thừa là tích số của phép nhân có n thừa số a nhân với nhau.
Lũy thừa ký hiệu là an đọc là lũy thừa bậc n của a hay a mũ n, số a gọi là cơ số, số n gọi là số mũ.
Tập xác định của hàm số lũy thừa:
Hàm số lũy thừa là các hàm số dạng
Các hàm số lũy thừa có tập xác định khác nhau, tùy theo α:
+ Nếu α nguyên dương thì tập các định là R.
+ Nếu α nguyên âm hoặc α=0 thì tập các định là R\{0}.
+ Nếu α không nguyên thì tập các định là (0;+∞)
Đặc biệt:
a² còn gọi là “a bình phương”.
a³ còn gọi là “a lập phương”.
II. Kiến thức cần nhớ về lũy thừa
1. Lũy thừa với số mũ tự nhiên
- Lũy thừa bậc n của a là tích của n thừa số bằng nhau, mỗi thừa số bằng a:
an = a.a…..a (n thừa số a) (n khác 0)
- Trong đó: a được gọi là cơ số, n được gọi là số mũ.
2. Nhân hai lũy thừa cùng cơ số
- Khi nhân hai lũy thừa cùng cơ số, ta giữa nguyên cơ số và cộng các số mũ.
am . an = am+n
3. Chia hai lũy thừa cùng cơ số
- Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ số và trừ các số mũ cho nhau.
am : an = am-n (a ≠ 0, m ≥ 0)
4. Lũy thừa của lũy thừa
(am )n = am+n
- Ví dụ : (22 )4 = 22.4 = 28
5. Nhân hai lũy thừa cùng số mũ, khác sơ số
am . bm = (a.b)m
- Ví dụ : 33 . 23 = (3.2)3 = 63
6. Chia hai lũy thừa cùng số mũ, khác cơ số
am : bm = (a : b)m
- Ví dụ : 64 : 34 = (6 : 3)4 = 24
7. Một vài quy ước
1n = 1; a0 = 1
- Ví dụ : 12020 = 1 ; 20200 = 1
8. Lũy thừa của 0 và 1
0m = 0
1m = 1
III. Lũy thừa của một số hữu tỉ
Căn bậc n của một số thực dương
Một căn bậc n của số a là một số x sao cho xn = a.
Nếu a là số thực dương, n là số nguyên dương thì có đúng một số thực dương x sao cho xn = a.
Lũy thừa với số mũ hữu tỷ của số thực dương
Lũy thừa với số mũ hữu tỷ tối giản m/n (m, n là số nguyên, trong đó n dương), của số thực dương a được định nghĩa là
định nghĩa này có thể mở rộng cho các số thực âm mỗi khi căn thức là có nghĩa.
Từ khóa » Cong Thuc Luy Thua 6
-
19+ Công Thức Lũy Thừa Lớp 6 Bài Tập Và Lý Thuyết
-
Công Thức Lũy Thừa Lớp 6 - Mobitool
-
Các Dạng Toán Về Luỹ Thừa Với Số Mũ Tự Nhiên - Toán Lớp 6
-
Tổng Hợp đầy đủ Bộ Công Thức Luỹ Thừa Cần Nhớ
-
Bộ Công Thức Về Lũy Thừa Chính Xác Nhất Và Bài Tập ứng Dụng Liên Quan
-
Lũy Thừa Với Số Mũ Tự Nhiên - Lớp 6 - Vinastudy
-
Lũy Thừa Với Số Mũ Tự Nhiên: Lý Thuyết & Bài Tập - Toán 6
-
Các Công Thức Tính Lũy Thừa Lớp 6, Các Dạng Toán Về Luỹ Thừa ...
-
Công Thức Lũy Thừa Lớp 6 - Honda Anh Dũng
-
Chia Hai Lũy Thừa Cùng Cơ Số - Công Thức & Giải Bài Tập Toán Lớp 6
-
Lũy Thừa Với Số Mũ Tự Nhiên. Nhân-chia Hai Lũy Thừa Cùng Cơ Số
-
Công Thức Lũy Thừa Lớp 6 - Vozz
-
Công Thức Cách Tính Lũy Thừa Với Số Mũ Tự Nhiên | Học Toán Lớp 6 7 8 9