Cách Viết Phương Trình Tổng Quát Của đường Thẳng Lớp 10 Cực Hay

Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 ❮ Bài trước Bài sau ❯

Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay

Với Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay Toán lớp 10 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập viết phương trình tổng quát của đường thẳng từ đó đạt điểm cao trong bài thi môn Toán lớp 10.

Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay

A. Phương pháp giải

* Để viết phương trình tổng quát của đường thẳng d ta cần xác định :

- Điểm A(x0; y0) thuộc d

- Một vectơ pháp tuyến n( a; b) của d

Khi đó phương trình tổng quát của d là: a(x-x0) + b(y-y0) = 0

* Cho đường thẳng d: ax+ by+ c= 0 nếu đường thẳng d// ∆ thì đường thẳng ∆ có dạng: ax + by + c’ = 0 (c’ ≠ c) .

B. Ví dụ minh họa

Ví dụ 1: Đường thẳng đi qua A(1; -2) , nhận n = (1; -2) làm véc tơ pháp tuyến có phương trình là:

A. x - 2y + 1 = 0. B. 2x + y = 0 C. x - 2y - 5 = 0 D. x - 2y + 5 = 0

Lời giải

Gọi (d) là đường thẳng đi qua A và nhận n = (1; -2) làm VTPT

=>Phương trình đường thẳng (d) : 1(x - 1) - 2(y + 2) = 0 hay x - 2y – 5 = 0

Chọn C.

Ví dụ 2: Viết phương trình tổng quát của đường thẳng ∆ đi qua M(1; -3) và nhận vectơ n(1; 2) làm vectơ pháp tuyến.

A. ∆: x + 2y + 5 = 0 B. ∆: x + 2y – 5 = 0 C. ∆: 2x + y + 1 = 0 D. Đáp án khác

Lời giải

Đường thẳng ∆: qua M( 1; -3) và VTPT n(1; 2)

Vậy phương trình tổng quát của đường thẳng ∆ là 1(x - 1) + 2(y + 3) = 0

Hay x + 2y + 5 = 0

Chọn A.

Ví dụ 3: Cho đường thẳng (d): x-2y + 1= 0 . Nếu đường thẳng (∆) đi qua M(1; -1) và song song với d thì ∆ có phương trình

A. x - 2y - 3 = 0 B. x - 2y + 5 = 0 C. x - 2y +3 = 0 D. x + 2y + 1 = 0

Lời giải

Do đường thẳng ∆// d nên đường thẳng ∆ có dạng x - 2y + c = 0 (c ≠ 1)

Ta lại có M(1; -1) ∈ (∆) ⇒ 1 - 2(-1) + c = 0 ⇔ c = -3

Vậy phương trình ∆: x - 2y - 3 = 0

Chọn A

Ví dụ 4: Cho ba điểm A(1; -2); B(5; -4) và C(-1;4) . Đường cao AA’ của tam giác ABC có phương trình

A. 3x - 4y + 8 = 0 B. 3x – 4y - 11 = 0 C. -6x + 8y + 11 = 0 D. 8x + 6y + 13 = 0

Lời giải

Ta có BC = (-6; 8)

Gọi AA’ là đường cao của tam giác ABC

⇒ AA' nhận VTPT n = BC = (-6; 8) và qua A(1; -2)

Suy ra phương trình AA’: -6(x - 1) + 8(y + 2) = 0

Hay -6x + 8y + 22 = 0 ⇔ 3x - 4y - 11 = 0.

Chọn B

Hay lắm đó

Ví dụ 5. Đường thẳng d đi qua điểm A( 1; -3) và có vectơ pháp tuyến n( 1; 5) có phương trình tổng quát là:

A. d: x + 5y + 2 = 0 B. d: x- 5y + 2 = 0 C. x + 5y + 14 = 0 D. d: x - 5y + 7 = 0

Lời giải

Ta có: đường thẳng d: qua A( 1; -3) và VTPT n( 1; 5)

⇒ Phương trình tổng quát của đường thẳng d:

1( x - 1) + 5.(y + 3) = 0 hay x + 5y + 14 = 0

Chọn C.

Ví dụ 6. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2; -1); B( 4; 5) và C( -3; 2) . Lập phương trình đường cao của tam giác ABC kẻ từ A

A. 7x + 3y – 11 = 0 B. -3x + 7y + 5 = 0 C. 3x + 7y + 2 = 0 D. 7x + 3y + 15 = 0

Lời giải

Gọi H là chân đường vuông góc kẻ từ A.

Đường thẳng AH : qua A( 2;-1) và Nhận VTPT BC( 7; 3)

⇒ Phương trình đường cao AH :

7( x - 2) + 3(y + 1) = 0 hay 7x + 3y – 11 = 0

Chọn A.

Ví dụ 7 : Cho tam giác ABC cân tại A có A(1 ; -2). Gọi M là trung điểm của BC và

M( -2 ; 1). Lập phương trình đường thẳng BC ?

A. x + y - 3 = 0 B. 2x - y + 6 = 0 C. x - y + 3 = 0 D. x + y + 1 = 0

Lời giải

+ Do tam giác ABC cân tại A nên đường trung tuyến AM đồng thời là đường cao

⇒ AM vuông góc BC.

⇒ Đường thẳng BC nhận AM( -3 ; 3) = -3(1 ; -1) làm VTPT

+ Đường thẳng BC : qua M(-2; 1) và VTPT n( 1; -1)

⇒ Phương trình đường thẳng BC :

1(x + 2) - 1(y - 1) = 0 hay x - y + 3 = 0

Chọn C.

Ví dụ 8 : Cho tam giác ABC có đường cao BH : x + y - 2 = 0, đường cao CK : 2x + 3y - 5 = 0 và phương trình cạnh BC : 2x - y + 2 = 0. Lập phương trình đường cao kẻ từ A của tam giác ABC ?

A. x - 3y + 1 = 0 B. x + 4y - 5 = 0 C. x + 2y - 3 =0 D. 2x - y + 1 = 0

Lời giải

+ Gọi ba đường cao của tam giác ABC đồng quy tại P. Tọa độ của P là nghiệm hệ phương trình :

Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 ⇒ P( 1 ; 1)

+Tọa độ điểm B là nghiệm hệ phương trình :

Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 ⇒ B( 0 ;2)

Tương tự ta tìm được tọa độ C(- Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 ; Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 )

+ Đường thẳng AP : Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10

⇒ Phương trình đường thẳng AP :

1(x - 1) + 2(y - 1) = 0 ⇔ x + 2y - 3 = 0

Chọn C.

Ví dụ 9. Phương trình tổng quát của đường thẳng d đi qua O và song song với đường thẳng ∆ : 3x + 5y - 9 = 0 là:

A. 3x + 5y - 7 = 0 B. 3x + 5y = 0 C. 3x - 5y = 0 D. 3x - 5y + 9 = 0

Lời giải

Do đường thẳng d// ∆ nên đường thẳng d có dạng : 3x + 5y + c = 0 ( c ≠ - 9)

Do điểm O(0; 0) thuộc đường thẳng d nên :

3.0 + 5.0 + c = 0 ⇔ c = 0

Vậy phương trình đường thẳng d: 3x + 5y = 0

Chọn B.

Ví dụ 10: Cho tam giác ABC có B(-2; -4). Gọi I và J lần lượt là trung điểm của AB và AC. Biết đường thẳng IJ có phương trình 2x - 3y + 1 = 0. Lập phương trình đường thẳng BC?

A. 2x + 3y - 1 = 0 B. 2x - 3y - 8 = 0 C. 2x + 3y - 6 = 0 D. 2x - 3y + 1 = 0

Lời giải

Do I và J lần lượt là trung điểm của AB và AC nên IJ là đường trung bình của tam giác ABC.

⇒ IJ// BC.

⇒ Đường thẳng BC có dạng : 2x - 3y + c = 0 ( c ≠ 1)

Mà điểm B thuộc BC nên: 2.(-2) - 3(-4) + c = 0 ⇔ c = -8

⇒ phương trình đường thẳng BC: 2x - 3y - 8 = 0

Chọn B.

Ví dụ 11. Cho ba đường thẳng (a):3x - 2y + 5 = 0; (b): 2x + 4y - 7 = 0 và

(c): 3x + 4y - 1 = 0 . Phương trình đường thẳng d đi qua giao điểm của a và b , và song song với c là:

A. 24x + 32y - 53 = 0. B. 23x + 32y + 53 = 0 C. 24x - 33y + 12 = 0. D. Đáp án khác

Lời giải

Giao điểm của (a) và ( b) nếu có là nghiệm hệ phương trình :

Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 ⇒ A( Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 ; Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 )

Ta có đường thẳng d // c nên đường thẳng d có dạng: 3x+ 4y+ c= 0 (c≠-1)

Vì điểm A thuộc đường thẳng d nên : 3.Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 + 4.Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 + c = 0 ⇔ c= Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10

Vậy d: 3x + 4y + Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 = 0 ⇔ d3 = 24x + 32y - 53 = 0

Chọn A.

Hay lắm đó

C. Bài tập vận dụng

Câu 1: Lập phương trình đường thẳng d đi qua điểm M( 2 ; 1) và nhận vecto n( -2 ; 1) làm VTPT ?

A. 2x + y - 5 = 0 B. - 2x + y + 3 = 0 C. 2x - y - 4 = 0 D. 2x + y - 1 = 0

Lời giải:

Đáp án: B

Trả lời:

Đường thẳng d : Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10

⇒ Phương trình đường thẳng d : - 2(x - 2) + 1(y - 1) = 0

Hay (d) : -2x + y + 3 = 0.

Câu 2: Cho đường thẳng (a) : 2x+ y- 3=0 và (b) : 3x- 4y+ 1= 0. Lập phương trình đường thẳng d đi qua giao điểm của hai đường thẳng a và b ; nhận vecto n( 2 ; -3) làm VTPT ?

A. 2x - 3y + 6 = 0 B. -2x - 3y + 6 = 0 C. 2x - 3y + 1 = 0 D. 2x + 3y - 1 =0

Lời giải:

Đáp án: C

Trả lời:

+ Giao điểm A của hai đường thẳng a và b là nghiệm hệ phương trình :

Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 ⇒ A( 1 ; 1)

+ Đường thẳng (d) : Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10

⇒ Phương trình đường thẳng d : 2(x - 1) - 3(y - 1) = 0 hay 2x - 3y + 1 = 0.

Câu 3: Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2; -1), B(4; 5) và C( -3; 2) . Lập phương trình đường cao của tam giác ABC kẻ từ B

A. 3x - 5y + 1 = 0 B. 3x + 5y - 20 = 0 C. 3x + 5y - 12 = 0 D. 5x - 3y -5 = 0

Lời giải:

Đáp án: D

Trả lời:

Gọi H là chân đường vuông góc kẻ từ B của tam giác ABC.

Đường thẳng BH : Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10

⇒ Phương trình đường cao BH :

5(x - 4) – 3(y - 5) = 0 hay 5x - 3y – 5 = 0

Câu 4: Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2;-1) ; B( 4;5) và C( -3; 2). Tìm trực tâm tam giác ABC?

A. ( Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 ; - Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 ) B. ( Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 ; Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 ) C. ( Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 ; Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 ) D. ( Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 ; Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 )

Lời giải:

Đáp án: B

Trả lời:

+ Gọi H và K lần lượt là chân đường vuông góc kẻ từ C và B của tam giác ABC.

+ Đường thẳng CH : Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10

⇒ Phương trình đường cao CH :

2(x + 3) + 6(y - 2) = 0 hay 2x + 6y – 6 = 0

⇔ (CH) : x+ 3y – 3= 0

+ Đường thẳng BK : Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10

=>Phương trình đường cao BK : - 5(x - 4) + 3(y - 5)=0 hay -5x + 3y + 5 = 0.

+ Gọi P là trực tâm tam giác ABC. Khi đó P là giao điểm của hai đường cao CH và BK nên tọa độ điểm P là nghiệm hệ :

Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10

Vậy trực tâm tam giác ABC là P( Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 ; Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10 )

Câu 5: Cho tam giác ABC có A( 2;-1) ; B( 4; 5) và C( -3; 2). Phương trình tổng quát của đường cao AH của tam giác ABC là:

A. 3x - 7y + 11 = 0. B. 7x + 3y - 11 = 0 C. 3x - 7y - 13 = 0. D. 7x + 3y + 13 = 0.

Lời giải:

Đáp án: B

Trả lời:

Gọi AH là đường cao của tam giác.

Đường thẳng AH : đi qua A( 2; -1) và nhận BC = (-7; -3) = - (7; 3) làm VTPT

=> Phương trình tổng quát AH: 7(x - 2) + 3(y + 1)= 0 hay 7x + 3y - 11 = 0

Hay lắm đó

Câu 6: Cho đường thẳng (d): 3x- 2y+ 8= 0. Đường thẳng ∆ đi qua M(3; 1) và song song với (d) có phương trình:

A. 3x - 2y - 7 = 0. B. 2x + 3y - 9 = 0. C. 2x - 3y - 3 = 0. D. 3x - 2y + 1 = 0

Lời giải:

Đáp án: A

Trả lời:

Do ∆ song song với d nên có phương trình dạng: 3x - 2y + c = 0 (c ≠ 8)

Mà ∆ đi qua M (3;1) nên 3.3 - 2.1 + c = 0 nên c = - 7

Vậy phương trình ∆: 3x - 2y - 7 = 0

Câu 7: Cho tam giác ABC có B(2; -3). Gọi I và J lần lượt là trung điểm của AB và AC. Biết đường thẳng IJ có phương trình x- y+ 3= 0. Lập phương trình đường thẳng BC?

A. x + y + 2 = 0 B. x - y - 5 = 0 C. x - y + 6 = 0 D. x - y = 0

Lời giải:

Đáp án: B

Trả lời:

Do I và J lần lượt là trung điểm của AB và AC nên IJ là đường trung bình của tam giác ABC.

⇒ IJ// BC.

⇒ Đường thẳng BC có dạng : x - y + c = 0 ( c ≠ 3)

Mà điểm B thuộc BC nên: 2 - (-3) + c = 0 ⇔ c = -5

⇒ phương trình đường thẳng BC: x - y - 5 = 0

Câu 8: Cho tam giác ABC cân tại A có A(3 ; 2). Gọi M là trung điểm của BC và M( -2 ; -4). Lập phương trình đường thẳng BC ?

A. 6x - 5y + 13 = 0 B. 5x - 6y + 6 = 0 C. 5x + 6y + 34 = 0 D. 5x + 6y + 1 = 0

Lời giải:

Đáp án: C

Trả lời:

+ Do tam giác ABC cân tại A nên đường trung tuyến AM đồng thời là đường cao

⇒ AM vuông góc BC.

⇒ Đường thẳng BC nhận AM( - 5; -6) = -(5; 6) làm VTPT

+ Đường thẳng BC : Cách viết phương trình tổng quát của đường thẳng lớp 10 cực hay - Toán lớp 10

⇒ Phương trình đường thẳng BC :

5(x + 2) + 6( y + 4) = 0 hay 5x + 6y + 34= 0

Câu 9: Viết phương trình tổng quát của đường thẳng d đi qua điểm M( -1; 2) và song song với trục Ox.

A. y + 2 = 0 B. x + 1 = 0 C. x - 1 = 0 D. y - 2 = 0

Lời giải:

Đáp án: D

Trả lời:

Trục Ox có phương trình y= 0

Đường thẳng d song song với trục Ox có dạng : y + c = 0 ( c ≠ 0)

Vì đường thẳng d đi qua điểm M( -1 ;2) nên 2 + c = 0 ⇔ c= -2

Vậy phương trình đường thẳng d cần tìm là : y - 2= 0

Từ khóa » Cách Viết Phương Trình Tổng Quát Của đường Cao