Cách Xác định Số Hạng Của Dãy Số Cực Hay - Toán Lớp 11
Có thể bạn quan tâm
- Sổ tay toán lý hóa 12 chỉ từ 29k/cuốn
Bài viết Cách xác định số hạng của dãy số với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách xác định số hạng của dãy số.
- Cách giải và ví dụ minh họa bài tập xác định số hạng của dãy số
- Bài tập vận dụng xác định số hạng của dãy số
Cách xác định số hạng của dãy số cực hay
A. Phương pháp giải & Ví dụ
Quảng cáo1. Dãy số là tập hợp các giá trị của hàm số u: ¥* → i; n → u(n)
Được sắp xếp theo thứ tự tăng dần liên tiếp theo đối số tự nhiên n:
u(1); u(2); u(3); ....u(n);....
♦ Ta kí hiệu u(n) bởi un và gọi là số hạng thứ n hay số hạng tổng quát của dãy số, u1 được gọi là số hạng đầu của dãy số.
♦ Ta có thể viết dãy số dưới dạng khai triển u1,u2,u3…..un,.... hoặc dạng rút gọn (un).
2. Người ta thường cho dãy số theo các cách:
♦ Cho số hạng tổng quát, tức là: cho hàm số u xác định dãy số đó
* Cho hệ thức biểu thị số hạng tổng quát qua số hạng (hoặc một vài số hạng) đứng trước nó.
Ví dụ minh họa
Bài 1: Cho dãy số có 4 số hạng đầu là: -1, 3, 19, 53. Hãy tìm một quy luật của dãy số trên và viết số hạng thứ 10 của dãy với quy luật vừa tìm.
Đáp án và hướng dẫn giải
Xét dãy (un) có dạng: un=an3+bn2+cn+d
Giải hệ trên ta tìm được: a = 1 ; b = 0 ; c = -3 ; d = 1
⇒ un=n3-3n+1 là một quy luật .
Số hạng thứ 10: u10=971.
Bài 2: Cho dãy số (un) được xác định bởi
Quảng cáo1. Viết năm số hạng đầu của dãy;
2. Dãy số có bao nhiêu số hạng nhận giá trị nguyên.
Đáp án và hướng dẫn giải
Ta có năm số hạng đầu của dãy
Ta có:
do đó un nguyên khi và chỉ khi nguyên hay n+1 là ước của 5. Điều đó xảy ra khi n+1=5 ⇒ n = 4
Vậy dãy số có duy nhất một số hạng nguyên là u4=7.
Bài 3: Cho dãy số (un) xác định bởi:
1. Viết năm số hạng đầu của dãy;
2. Chứng minh rằng un=u4;
Đáp án và hướng dẫn giải
1. Ta có 5 số hạng đầu của dãy là:
u1=1;u2=2u1+3=5;u3=2u2+3=13;u4=29; u5=61.
2. Ta chứng minh bài toán bằng phương pháp quy nạp
* Với n = 1 ⇒ u4=1 ⇒ bài toán đúng với n = 1
* Giả sử uk=2k+1-3 , ta chứng minh u_(k+1)=2k+2-3
Thật vậy, theo công thức truy hồi ta có:
uk+1=2uk+3=2(2k+1-3)=2k+2-3 (đpcm).
Quảng cáoB. Bài tập vận dụng
Bài 1: Cho dãy số (u_n) có số hạng tổng quát
1. Viết năm số hạng đầu của dãy số.
2. Tìm số hạng thứ 100 và 200
3. Số 167/84 có thuộc dãy số đã cho hay không
4. Dãy số có bao nhiêu số hạng là số nguyên.
Lời giải:
1. Năm số hạng đầu của dãy là: u1=1, u2=5/4, u3=7/5, u4=3/2 ,u5=11/7.
2.
3. Giả sử
Vậy 167/84 là số hạng thứ 250 của dãy số un .
4. Ta có:
⇒ un nguyên khi và chỉ khi 3 chia hết cho (n+2) ⇒ n = 1
Vậy dãy số có duy nhất một số hạng là số nguyên.
Bài 2: Cho dãy số (u_n) xác định bởi:
1. Viết 7 số hạng đầu tiên của dãy
2. Chứng minh rằng: un=5.3n-1-6.2n-1∀n ≥ 1
Lời giải:
Bốn số hạng đầu của dãy
u3=5u2-6u1=21; u4=5u3-6u2=87; u5=309; u6=1023; u7=3261 .
2. Ta chứng minh bằng phương pháp quy nạp
* u1=5.30-6.20=-1(đúng)
* Giả sử uk=5.3(k-1)-6.2(k-1) ∀k ≥ 2 .
Khi đó, theo công thức truy hồi ta có:
u(k+1)=5uk-6u(k-1)=5.(5.3(k-1)-6.2(k-1) )-6(5.3(k-2)-6.2(k-2) )=5(5.3(k-1)-6(3(k-2) )-6(5.2(k-1)-6.2(k-2) )=5.3k-6.2k( đpcm).
Bài 3: Cho dãy số (u_n) có số hạng tổng quát:
1. Viết 6 số hạng đầu của dãy số
2. Tính u20 ,u2010
3. Dãy số đã cho có bao nhiêu số hạng là số nguyên.
Lời giải:
1. Ta có: u1=2+√5,u2=4+2√2,u3=6+√13,u4=8+2√5,u5=10+√29, u6=12+2√10.
2.
3.
⇔ (k – n) (k + n) = 4 phương trình này vô nghiệm
Vậy không có số hạng nào của dãy nhận giá trị nguyên.
Bài 4: Cho dãy số (u_n) xác định bởi:
Quảng cáo1. Tìm 5 số hạng đầu của dãy
2. Chứng minh rằng : un=5.2n-3n-5 ∀n=1,2,3…
3. Tìm số dư của u2010 khi chia cho 3
Lời giải:
1 Ta có: u1=2, u2=9, u3=26, u4=63, u5=140
2. Chứng minh bằng phương pháp quy nạp
3. Ta có: 5.22010≡1.(-1)2010=1(mod3)
Suy ra : u2010≡2(mod 3).
Bài 5: Cho dãy số (un):
1. Chứng minh rằng dãy (vn):vn=un-u(n-1) là dãy không đổi
2. Biểu thị un qua u(n-1) và tìm CTTQ của dãy số (un)
Lời giải:
1. Ta có: u(n+2)-u(n+1)=u(n+1)-un ⇒ v(n+2)=u(n+1)=⋯=u2=1
2. Ta có: : un-u(n-1)=1 ⇒ un=u(n-1)+1
Suy ra un=(un-u(n-1))+(u(n-1)-u(n-2))+⋯+(u2-u1)+u1=1+1+⋯+1+u1=n-1+2018=n+2017
Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:
- Dạng 1: Phương pháp quy nạp toán học
- Trắc nghiệm phương pháp quy nạp toán học
- Trắc nghiệm xác định số hạng của dãy số
- Dạng 3: Tính đơn điệu, tính bị chặn của dãy số
- Trắc nghiệm tính đơn điệu, tính bị chặn của dãy số
- Dạng 4: Phương pháp giải bài tập Cấp số cộng
- Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
- Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 10 (từ 99k )
- Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 11 (từ 99k )
- 30 đề DGNL Bách Khoa, DHQG Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7) (từ 119k )
ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11
Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Tổng đài hỗ trợ đăng ký : 084 283 45 85
Từ khóa » Cách Tìm Quy Luật Của Dãy Số Lớp 11
-
Cách Xác định Số Hạng Của Dãy Số Cực Hay - Toán Lớp 11 - Haylamdo
-
Cách Tìm Quy Luật Của Dãy Số Lớp 11 - Thả Rông
-
Bài Toán Tính Tổng Của Dãy Số Có Quy Luật Toán 11
-
Cách Tìm Quy Luật Của Dãy Số Lớp 11 | HoiCay - Top Trend News
-
Phương Pháp Giải Và Bài Tập Về Cách Tìm Số Hạng Tổng Quát Của Dãy ...
-
Xác định Công Thức Tổng Quát Của Dãy Số_SKKN Toán Lớp 11 - Tài Liệu
-
Dự đoán Công Thức Và Chứng Minh Quy Nạp Công Thức Tổng Quát Của ...
-
Giới Hạn Dãy Số Có Quy Luật Công Thức, Dãy Cho Bởi Hệ Thức Truy Hồi
-
Hướng Dẫn Tìm Công Thức Truy Hồi Của Dãy Số
-
Bài Toán Tính Tổng Dãy Số Có Quy Luật Toán 11
-
BÀI TOÁN TÌM QUY LUẬT CỦA DÃY SỐ - YouTube
-
Quy Luật Dãy Số - Phương Pháp Giải Các Toán Tiểu Học
-
Lý Thuyết Dãy Số | SGK Toán Lớp 11