Câu 16 Trang 9 SBT Môn Toán 9 Tập 2: Giải Các Hệ Phương Trình ...

Giải các hệ phương trình sau bằng phương pháp thế:  

\(a)\left\{ {\matrix{ {4x + 5y = 3} \cr {x - 3y = 5} \cr} } \right.\)

\(b)\left\{ {\matrix{ {7x - 2y = 1} \cr {3x + y = 6} \cr} } \right.\)

\(c)\left\{ {\matrix{ {1,3x + 4,2y = 12} \cr {0,5x + 2,5y = 5,5} \cr} } \right.\)

\(d)\left\{ {\matrix{ {\sqrt 5 x - y = \sqrt 5 \left( {\sqrt 3 - 1} \right)} \cr {2\sqrt 3 x + 3\sqrt 5 y = 21} \cr} } \right.\)

a)

\(\eqalign{ & \left\{ {\matrix{ {4x + 5y = 3} \cr {x - 3y = 5} \cr} \Leftrightarrow \left\{ {\matrix{{x = 3y + 5} \cr {4\left( {3y + 5} \right) + 5y = 3} \cr} } \right.} \right. \cr& \Leftrightarrow \left\{ {\matrix{{x = 3y + 5} \cr {17y = - 17} \cr} \Leftrightarrow \left\{ {\matrix{{x = 3y + 5} \cr {y = - 1} \cr} } \right.} \right. \cr& \Leftrightarrow \left\{ {\matrix{{x = 2} \cr {y = - 1} \cr} } \right. \cr} \)

Vậy hệ phương trình có 1 nghiệm duy nhất: (x; y) = (2; -1)

Advertisements (Quảng cáo)

b)

\(\eqalign{ & \left\{ {\matrix{ {7x - 2y = 1} \cr {3x + y = 6} \cr} \Leftrightarrow \left\{ {\matrix{{y = - 3x + 6} \cr {7x - 2\left( { - 3x + 6} \right) = 1} \cr} } \right.} \right. \cr & \Leftrightarrow \left\{ {\matrix{{y = - 3x + 6} \cr {13x = 13} \cr} \Leftrightarrow \left\{ {\matrix{{x = 1} \cr {y = - 3x + 6} \cr} } \right.} \right. \cr & \Leftrightarrow \left\{ {\matrix{{x = 1} \cr {y = 3} \cr} } \right. \cr} \)

Vậy hệ phương trình có 1 nghiệm duy nhất: (x; y) = (1; 3)

c)

\(\eqalign{ & \left\{ {\matrix{ {1,3x + 4,2y = 12} \cr {0,5x + 2,5y = 5,5} \cr} \Leftrightarrow \left\{ {\matrix{{1,3x + 4,2y = 12} \cr {x + 5y = 11} \cr} } \right.} \right. \cr & \Leftrightarrow \left\{ {\matrix{{x = 11 - 5y} \cr {1,3\left( {11 - 5y} \right) + 4,2y = 12} \cr} } \right. \cr & \Leftrightarrow \left\{ {\matrix{{x = 11 - 5y} \cr { - 23y = - 23} \cr} \Leftrightarrow \left\{ {\matrix{{x = 11 - 5y} \cr {y = 1} \cr} } \right.} \right. \cr & \Leftrightarrow \left\{ {\matrix{{x = 6} \cr {y = 1} \cr} } \right. \cr} \)

Vậy hệ phương trình có 1 nghiệm duy nhất: (x; y) = (6; 1)

d) 

\(\eqalign{ & \left\{ {\matrix{ {\sqrt 5 x - y = \sqrt 5 \left( {\sqrt 3 - 1} \right)} \cr {2\sqrt 3 x + 3\sqrt 5 y = 21} \cr} \Leftrightarrow \left\{ {\matrix{{y = \sqrt 5 \left( {x + 1 - \sqrt 3 } \right)} \cr {2\sqrt 3 x + 15\left( {x + 1 - \sqrt 3 } \right) = 21} \cr} } \right.} \right. \cr & \Leftrightarrow \left\{ {\matrix{{y = \sqrt 5 \left( {x + 1 - \sqrt 3 } \right)} \cr {\left( {2\sqrt 3 + 15} \right)x = 3\left( {2 + 5\sqrt 3 } \right)} \cr} \Leftrightarrow \left\{ {\matrix{{y = \sqrt 5 \left( {x + 1 - \sqrt 3 } \right)} \cr {x = {{6 + 15\sqrt 3 } \over {2\sqrt 3 + 15}}} \cr} } \right.} \right. \cr & \Leftrightarrow \left\{ {\matrix{{y = \sqrt 5 \left( {x + 1 - \sqrt 3 } \right)} \cr {x = {{\left( {6 + 15\sqrt 3 } \right)\left( {15 - 2\sqrt 3 } \right)} \over {225 - 12}}} \cr} \Leftrightarrow \left\{ {\matrix{{y = \sqrt 5 \left( {x + 1 - \sqrt 3 } \right)} \cr {x = {{90 - 12\sqrt 3 + 225\sqrt 3 - 90} \over {213}}} \cr} } \right.} \right. \cr & \Leftrightarrow \left\{ {\matrix{{y = \sqrt 5 \left( {x + 1 - \sqrt 3 } \right)} \cr {x = {{213\sqrt 3 } \over {213}}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{y = \sqrt 5 \left( {x + 1 - \sqrt 3 } \right)} \cr {x = \sqrt 3 } \cr} } \right. \cr & \Leftrightarrow \left\{ {\matrix{{y = \sqrt 5 } \cr {x = \sqrt 3 } \cr} } \right. \cr} \)

Vậy hệ phương trình có 1 nghiệm duy nhất: (x; y) = \(\left( {\sqrt 3 ;\sqrt 5 } \right)\)

Từ khóa » Giải Hệ Phương Trình Bằng Phương Pháp Thế Sbt