Câu 4.1, 4.2, 4.3 Trang 12, 13 SBT Môn Toán 9 Tập 2: Giải Hệ ...

Câu 4.1 trang 12 Sách bài tập (SBT) Toán 9 tập 2

Giải các hệ phương trình:

\(a)\left\{ {\matrix{ {{3 \over x} + {5 \over y} = - {3 \over 2}} \cr {{5 \over x} - {2 \over y} = {8 \over 3}} \cr} } \right.\)

\(b)\left\{ {\matrix{ {{2 \over {x + y - 1}} - {4 \over {x - y + 1}} = - {{14} \over 5}} \cr {{3 \over {x + y - 1}} + {2 \over {x - y + 1}} = - {{13} \over 5}} \cr} } \right.\)

\(a)\left\{ {\matrix{{{3 \over x} + {5 \over y} = - {3 \over 2}} \cr {{5 \over x} - {2 \over y} = {8 \over 3}} \cr} } \right.\)

Đặt \({1 \over x} = a;{1 \over y} = b.\) Điều kiện: \(x \ne 0;y \ne 0\)

Ta có hệ phương trình:

\(\eqalign{ & \left\{ {\matrix{ {3a + 5b = - {3 \over 2}} \cr {5a - 2b = {8 \over 3}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{6a + 10b = - 3} \cr {15a - 6b = 8} \cr} } \right. \cr & \Leftrightarrow \left\{ {\matrix{{30a + 50b = - 15} \cr {30a - 12b = 16} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{62b = - 31} \cr {6a + 10b = - 3} \cr} } \right. \cr & \Leftrightarrow \left\{ {\matrix{{b = - {1 \over 2}} \cr {6a + 10.\left( { - {1 \over 2}} \right) = - 3} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{b = - {1 \over 2}} \cr {6a = 2} \cr} } \right. \cr & \Leftrightarrow \left\{ {\matrix{{b = - {1 \over 2}} \cr {a = {1 \over 3}} \cr} } \right. \cr} \)

Suy ra:

\(\left\{ {\matrix{ {{1 \over x} = {1 \over 3}} \cr {{1 \over y} = - {1 \over 2}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{x = 3} \cr {y = - 2} \cr} } \right.\)

Hai giá trị của x và y thỏa mãn điều kiện bài toán.

Vậy hệ phương trình đã cho có một nghiệm (x; y) =  (3; -2)

\(b)\left\{ {\matrix{{{2 \over {x + y - 1}} - {4 \over {x - y + 1}} = - {{14} \over 5}} \cr {{3 \over {x + y - 1}} + {2 \over {x - y + 1}} = - {{13} \over 5}} \cr} } \right.\)

Đặt \({1 \over {x + y - 1}} = a;{1 \over {x - y + 1}} = b.\) Điều kiện: \(x + y - 1 \ne 0;x - y + 1 \ne 0\)

Ta có hệ phương trình:

\(\eqalign{ & \left\{ {\matrix{ {2a - 4b = - {{14} \over 5}} \cr {3a + 2b = - {{13} \over 5}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{2a - 4b = - {{14} \over 5}} \cr {6a + 4b = - {{26} \over 5}} \cr} } \right. \cr & \Leftrightarrow \left\{ {\matrix{{8a = - 8} \cr {3a + 2b = - {{13} \over 5}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{a = - 1} \cr { - 3 + 2b = - {{13} \over 5}} \cr} } \right. \cr & \Leftrightarrow \left\{ {\matrix{{a = - 1} \cr {b = {1 \over 5}} \cr} } \right. \cr} \)

Suy ra:

\(\eqalign{ & \left\{ {\matrix{ {{1 \over {x + y - 1}} = - 1} \cr {{1 \over {x - y + 1}} = {1 \over 5}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{x + y - 1 = - 1} \cr {x - y + 1 = 5} \cr} } \right. \cr & \Leftrightarrow \left\{ {\matrix{{x + y = 0} \cr {x - y = 4} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{2x = 4} \cr {x - y = 4} \cr} } \right. \cr & \Leftrightarrow \left\{ {\matrix{{x = 2} \cr {2 - y = 4} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{x = 2} \cr {y = - 2} \cr} } \right. \cr} \)

Hai giá trị x = 2; y = -2 thỏa mãn điều kiện bài toán.

Vậy hệ phương trình đã cho có một nghiệm (x; y) =  (2; -2)

Câu 4.2 trang 12 Sách bài tập (SBT) Toán 9 tập 2

Hãy xác định hàm số bậc nhất thỏa mãn mỗi điều kiện sau:

a) Đồ thị hàm số đi qua hai điểm M(-3; 1) và N(1; 2)

b) Đồ thị hàm số đi qua hai điểm \(M\left( {\sqrt 2 ;1} \right)\) và \(N\left( {3;3\sqrt 2  - 1} \right)\)

c) Đồ thị đi qua điểm M(-2; 9) và cắt đường thẳng (d): 3x – 5y = 1 tại điểm có hoành độ bằng 2.

Hàm số bậc nhất có dạng y = ax + b (a ≠ 0)

a) Đồ thị hàm số y = ax + b đi qua M(-3; 1) và N(1; 2) nên tọa độ của M và N nghiệm đúng phương trình hàm số.

Điểm M: 1 = -3a + b

Điểm N: 2 = a + b

Hai số a và b là nghiệm của hệ phương trình:

Advertisements (Quảng cáo)

\(\eqalign{ & \left\{ {\matrix{ { - 3a + b = 1} \cr {a + b = 2} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{4a = 1} \cr {a + b = 2} \cr} } \right. \cr & \Leftrightarrow \left\{ {\matrix{{a = {1 \over 4}} \cr {{1 \over 4} + b = 2} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{a = {1 \over 4}} \cr {b = {7 \over 4}} \cr} } \right. \cr} \)

Hàm số cần tìm: $y = {1 \over 4}x + {7 \over 4}\)

b) Đồ thị hàm số y = ax + b đi qua \(M\left( {\sqrt 2 ;1} \right)\) và \(N\left( {3;3\sqrt 2  - 1} \right)\) nên tọa độ của M và N nghiệm đúng phương trình hàm số.

Điểm M: \(1 = a\sqrt 2  + b\)

Điểm N:  \(3\sqrt 2  - 1 = 3a + b\)

Hai số a và b là nghiệm của hệ phương trình:

\(\eqalign{ & \left\{ {\matrix{ {a\sqrt 2 + b = 1} \cr {3a + b = 3\sqrt 2 - 1} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{\left( {3 - \sqrt 2 } \right)a = 3\sqrt 2 - 2} \cr {a\sqrt 2 + b = 1} \cr} } \right. \cr & \Leftrightarrow \left\{ {\matrix{{\left( {3 - \sqrt 2 } \right)a = \sqrt 2 \left( {3 - \sqrt 2 } \right)} \cr {a\sqrt 2 + b = 1} \cr} } \right. \cr & \Leftrightarrow \left\{ {\matrix{{a = \sqrt 2 } \cr {{{\left( {\sqrt 2 } \right)}^2} + b = 1} \cr} } \right. \cr & \Leftrightarrow \left\{ {\matrix{{a = \sqrt 2 } \cr {2 + b = 1} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{a = \sqrt 2 } \cr {b = - 1} \cr} } \right. \cr} \)

Hàm số cần tìm: \(y = \sqrt 2 x - 1\)

c) Điểm N nằm trên đường thẳng (d): 3x – 5y = 1 có hoành độ bằng 2 nên tung độ của N bằng: \(3.2 - 5y = 1 \Leftrightarrow  - 5y =  - 5 \Leftrightarrow y = 1\)

Điểm N( 2; 1)

Đồ thị hàm số y = ax + b đi qua M(-2; 9) và N(2; 1) nên tọa độ của M và N nghiệm đúng phương trình hàm số.

Điểm M: 9 = -2a + b

Điểm N: 1 =2a + b

Hai số a và b là nghiệm của hệ phương trình:

\(\eqalign{ & \left\{ {\matrix{ { - 2a + b = 9} \cr {2a + b = 1} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{2b = 10} \cr {2a + b = 1} \cr} } \right. \cr & \Leftrightarrow \left\{ {\matrix{{b = 5} \cr {2a + 5 = 1} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{b = 5} \cr {2a = - 4} \cr} } \right. \cr & \Leftrightarrow \left\{ {\matrix{{b = 5} \cr {a = - 2} \cr} } \right. \cr} \)

Hàm số cần tìm là y =  - 2x + 5

Câu 4.3 trang 13 Sách bài tập (SBT) Toán 9 tập 2

Giải hệ phương trình:

\(\left\{ {\matrix{ {{{xy} \over {x + y}} = {2 \over 3}} \cr {{{yz} \over {y + z}} = {6 \over 5}} \cr {{{zx} \over {z + x}} = {3 \over 4}} \cr} } \right.\)

Điều kiện: \(x \ne  - y;y \ne  - z;z \ne  - x\)

Từ hệ phương trình đã cho suy ra: $x \ne 0;y \ne 0;z \ne 0\)

\(\left\{ {\matrix{ {{{xy} \over {x + y}} = {2 \over 3}} \cr {{{yz} \over {y + z}} = {6 \over 5}} \cr {{{zx} \over {z + x}} = {3 \over 4}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{{{x + y} \over {xy}} = {3 \over 2}} \cr {{{y + z} \over {yz}} = {5 \over 6}} \cr {{{z + x} \over {zx}} = {4 \over 3}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{{1 \over x} + {1 \over y} = {3 \over 2}} \cr {{1 \over y} + {1 \over z} = {5 \over 6}} \cr {{1 \over z} + {1 \over x} = {4 \over 3}} \cr} } \right.\)

Đặt \({1 \over x} = a;{1 \over y} = b;{1 \over z} = c\)

Ta có hệ phương trình:

\(\left\{ {\matrix{ {a + b = {3 \over 2}} \cr {b + c = {5 \over 6}} \cr {c + a = {4 \over 3}} \cr} } \right.\)

Cộng từng vế ba phương trình ta có:

\(\eqalign{ & a + b + b + c + c + a = {3 \over 2} + {5 \over 6} + {4 \over 3} \cr & \Leftrightarrow 2\left( {a + b + c} \right) = {9 \over 6} + {5 \over 6} + {8 \over 6} \cr & \Leftrightarrow a + b + c = {{11} \over 6} \cr & a = \left( {a + b + c} \right) - \left( {b + c} \right) = {{11} \over 6} - {5 \over 6} = 1 \cr & b = \left( {a + b + c} \right) - \left( {c + a} \right) = {{11} \over 6} - {4 \over 3} = {{11} \over 6} - {8 \over 6} = {1 \over 2} \cr & c = \left( {a + b + c} \right) - \left( {a + b} \right) = {{11} \over 6} - {3 \over 2} = {{11} \over 6} - {9 \over 6} = {1 \over 3} \cr} \)

Suy ra:

\(\left\{ {\matrix{ {{1 \over x} = 1} \cr {{1 \over y} = {1 \over 2}} \cr {{1 \over z} = {1 \over 3}} \cr} } \right. \Leftrightarrow \left\{ {\matrix{{x = 1} \cr {y = 2} \cr {z = 3} \cr} } \right.\)

Vậy hệ phương trình đã cho có một nghiệm (x; y; z) = (1; 2; 3).

Từ khóa » Giải Hệ Phương Trình Bằng Phương Pháp Thế Sbt