Cho A,b,c > 0 CMR A3/b B3/c C3/a >= Ab Bc Ca - Hoc24

HOC24

Lớp học Học bài Hỏi bài Giải bài tập Đề thi ĐGNL Tin tức Cuộc thi vui Khen thưởng
  • Tìm kiếm câu trả lời Tìm kiếm câu trả lời cho câu hỏi của bạn
Đóng Đăng nhập Đăng ký

Lớp học

  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Lớp 2
  • Lớp 1

Môn học

  • Toán
  • Vật lý
  • Hóa học
  • Sinh học
  • Ngữ văn
  • Tiếng anh
  • Lịch sử
  • Địa lý
  • Tin học
  • Công nghệ
  • Giáo dục công dân
  • Tiếng anh thí điểm
  • Đạo đức
  • Tự nhiên và xã hội
  • Khoa học
  • Lịch sử và Địa lý
  • Tiếng việt
  • Khoa học tự nhiên
  • Hoạt động trải nghiệm
  • Hoạt động trải nghiệm, hướng nghiệp
  • Giáo dục kinh tế và pháp luật

Chủ đề / Chương

Bài học

HOC24

Khách Khách vãng lai Đăng nhập Đăng ký Khám phá Hỏi đáp Đề thi Tin tức Cuộc thi vui Khen thưởng
  • Tất cả
  • Toán
  • Vật lý
  • Hóa học
  • Sinh học
  • Ngữ văn
  • Tiếng anh
  • Lịch sử
  • Địa lý
  • Tin học
  • Công nghệ
  • Giáo dục công dân
  • Tiếng anh thí điểm
  • Hoạt động trải nghiệm, hướng nghiệp
  • Giáo dục kinh tế và pháp luật
Hãy tham gia nhóm Học sinh Hoc24OLM Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Câu hỏi

Hủy Xác nhận phù hợp Chọn lớp Tất cả Lớp 12 Lớp 11 Lớp 10 Lớp 9 Lớp 8 Lớp 7 Lớp 6 Lớp 5 Lớp 4 Lớp 3 Lớp 2 Lớp 1 Môn học Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Tiếng anh thí điểm Đạo đức Tự nhiên và xã hội Khoa học Lịch sử và Địa lý Tiếng việt Khoa học tự nhiên Hoạt động trải nghiệm Hoạt động trải nghiệm, hướng nghiệp Giáo dục kinh tế và pháp luật Mới nhất Mới nhất Chưa trả lời Câu hỏi hay Hattori Heiji
  • Hattori Heiji
10 tháng 4 2018 lúc 19:19

Cho a,b,c >0 CMR a3/b+b3/c+c3/a>=ab+bc+ca

Mong mọi người giải chi tiết

Xem chi tiết Lớp 8 Toán Câu hỏi của OLM 2 2 Khách Gửi Hủy Pham Quoc Cuong Pham Quoc Cuong 10 tháng 4 2018 lúc 21:05

Cách khác dễ hiểu hơn

Áp dụng BĐT Cô si 2 số ko âm 

Ta có: \(\frac{a^3}{b}+ab\ge2\sqrt{a^4}=2a^2\)

Tương tự rồi sau đó lại có:

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)

Đúng 2 Bình luận (0) Khách Gửi Hủy Pham Quoc Cuong Pham Quoc Cuong 10 tháng 4 2018 lúc 20:07

Áp dụng BĐT Cô si với 3 số k âm 

\(\frac{a^3}{b}+\frac{a^3}{b}+b^2\ge\frac{3\sqrt[3]{a^3.a^3.b^2}}{b^2}=3a^2\)

\(\frac{b^3}{c}+\frac{b^3}{c}+b^2\ge3b^2\)

\(\frac{c^3}{a}+\frac{c^3}{a}+c^2\ge3c^2\)

\(\Rightarrow2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)+a^2+b^2+c^2\ge3\left(a^2+b^2+c^2\right)\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\)

Mà \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)

Đúng 3 Bình luận (0) Khách Gửi Hủy Jess Nguyen
  • Jess Nguyen
2 tháng 3 2022 lúc 19:36

 CMR: 2(a3 + b3 + c3) + 3abc ≥ ab + bc + ca biết a + b + c = 1 và a, b, c dương

 

Xem chi tiết Lớp 8 Toán 1 0 Khách Gửi Hủy Nguyễn Việt Lâm Nguyễn Việt Lâm CTV 3 tháng 3 2022 lúc 0:01

Do \(a+b+c=1\) nên BĐT cần chứng minh tương đương:

\(2\left(a^3+b^3+c^3\right)+3abc\ge\left(ab+bc+ca\right)\left(a+b+c\right)\)

\(\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

Thật vậy, ta có:

\(2\left(a^3+b^3+c^3\right)=\left(a^3+b^3\right)+\left(b^3+c^3\right)+\left(c^3+a^3\right)\)

\(=\left(a+b\right)\left(a^2+b^2-ab\right)+\left(b+c\right)\left(b^2+c^2-bc\right)+\left(c+a\right)\left(c^2+a^2-ca\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)+\left(b+c\right)\left(2bc-bc\right)+\left(c+a\right)\left(2ca-ca\right)\)

\(=ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Đúng 0 Bình luận (0) Khách Gửi Hủy Lelemalin
  • Lelemalin
21 tháng 8 2021 lúc 20:58

Bài 1:

a) Cho a + b + c = 0. CMR: a3 + b3+ c3 = 3abc

b) Cho a3 + b3 + c3 = 3abc và a. b, c đôi một khác nhau. CMR: a + b + c = 0

Xem chi tiết Lớp 8 Toán 3 0 Khách Gửi Hủy Nguyễn Lê Phước Thịnh Nguyễn Lê Phước Thịnh CTV 21 tháng 8 2021 lúc 21:03

a: Ta có: \(a+b+c=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

b: Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow a+b+c=0\)

Đúng 3 Bình luận (0) Khách Gửi Hủy Lấp La Lấp Lánh Lấp La Lấp Lánh 21 tháng 8 2021 lúc 21:14

a) \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(đúng do a+b+c = 0)

Đúng 1 Bình luận (0) Khách Gửi Hủy Lấp La Lấp Lánh Lấp La Lấp Lánh 21 tháng 8 2021 lúc 21:21

b) Ta có: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\)

\(ĐTXR\Leftrightarrow a=b=c\), mà a,b,c đôi một khác nhau => Đẳng thức không xảy ra\(\Rightarrow a^2+b^2+c^2>ab+ac+bc\Rightarrow a^2+b^2+c^2-ab-ac-bc>0\)

Ta có: \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)\(\Rightarrow a+b+c=0\)( do (1))

Đúng 1 Bình luận (0) Khách Gửi Hủy Lelemalin
  • Lelemalin
21 tháng 8 2021 lúc 21:20

Bài 1:

a) Cho a + b + c = 0. CMR: a3 + b3+ c3 = 3abc

b) Cho a3 + b3 + c3 = 3abc và a. b, c đôi một khác nhau. CMR: a + b + c = 0

Xem chi tiết Lớp 8 Toán 1 0 Khách Gửi Hủy Nguyễn Lê Phước Thịnh Nguyễn Lê Phước Thịnh CTV 21 tháng 8 2021 lúc 21:29

a: Ta có: a+b+c=0

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

b: Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow a+b+c=0\)

Đúng 2 Bình luận (0) Khách Gửi Hủy Hoàng Hưng Đạo
  • Hoàng Hưng Đạo
14 tháng 5 2021 lúc 20:58

2. Chứng minh rằng:

a. a3+ b3 = (a + b)3 - 3ab (a + b)

b. a3+ b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca) 

Xem chi tiết Lớp 8 Toán 2 0 Khách Gửi Hủy zanggshangg zanggshangg 14 tháng 5 2021 lúc 21:04

a )

`VP= (a+b)^3-3ab(a+b)`

     `=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2`

     `=a^3+b^3 =VT (đpcm)`

b) 

b) Ta có

`VT=a3+b3+c3−3abc`

     `=(a+b)3−3ab(a+b)+c3−3abc`

     `=[(a+b)3+c3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)2+c2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a2+b2+2ab+c2−ac−bc−3ab)`

    `=(a+b+c)(a2+b2+c2−ab−bc−ca)=VP`

   Đúng 0 Bình luận (0) Khách Gửi Hủy zanggshangg zanggshangg 14 tháng 5 2021 lúc 21:09

 

a) Ta có:

`VP= (a+b)^3-3ab(a+b)`

     `=a^3 + b^3+3ab ( a + b )- 3ab ( a + b )`

     `=a^3 + b^3=VT(dpcm)`

b) Ta có

`VT=a^3+b^3+c^3−3abc`

     `=(a+b)^3−3ab(a+b)+c^3−3abc`

     `=[(a+b)^3+c^3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)^2+c^2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a^2+b^2+2ab+c^2−ac−bc−3ab)`

    `=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)=VP`

Đúng 0 Bình luận (0) Khách Gửi Hủy Nguyễn Ngọc Anh
  • Nguyễn Ngọc Anh
4 tháng 8 2023 lúc 22:31

Cho a+b+c+d=0. CMR: a3+b3+c3+d3=3(c+d)(ab-cd)

Xem chi tiết Lớp 8 Toán Câu hỏi của OLM 3 0 Khách Gửi Hủy Lê Song Phương Lê Song Phương 5 tháng 8 2023 lúc 6:42

Ta có:

\(a^3+b^3+c^3+d^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+\left(c+d\right)^3-3cd\left(c+d\right)\)

\(=-\left(c+d\right)^3+3ab\left(c+d\right)+\left(c+d\right)^3-3cd\left(c+d\right)\) (vì \(a+b=-\left(c+d\right)\))

\(=3\left(c+d\right)\left(ab-cd\right)\) 

Vậy đẳng thức được chứng minh.

Đúng 1 Bình luận (0) Khách Gửi Hủy Đặng Ninh Phượng Đặng Ninh Phượng 4 tháng 8 2023 lúc 22:36

...

Đúng 0 Bình luận (0) Khách Gửi Hủy Đào Trí Bình Đào Trí Bình 5 tháng 8 2023 lúc 6:42

lần sau nhé

Đúng 0 Bình luận (0) Khách Gửi Hủy Đào Thu Hiền
  • Đào Thu Hiền
11 tháng 2 2022 lúc 23:19

1) Cho a, b, c ∈ [0;1] và a + b + c = 2. CMR ab + bc + ca ≥ 2abc + \(\dfrac{20}{27}\)

2) Cho a, b, c ∈ [1;3] và a + b + c = 6. CMR a3 + b3 + c3 ≤ 36

3) Cho các số dương a, b, c, d thoả mãn a + b + c + d = 4. CMR \(\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+d^2}+\dfrac{d}{1+a^2}\) ≥ 2

Xem chi tiết Lớp 10 Toán 3 0 Khách Gửi Hủy Rin Huỳnh Rin Huỳnh 11 tháng 2 2022 lúc 23:41

3)undefined

Đúng 3 Bình luận (0) Khách Gửi Hủy Nguyễn Việt Lâm Nguyễn Việt Lâm CTV 13 tháng 2 2022 lúc 17:04

1.

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với \(\dfrac{2}{3}\), không mất tính tổng quát, giả sử đó là b và c

\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\ge0\)

Mặt khác \(0\le a\le1\Rightarrow1-a\ge0\)

\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\left(1-a\right)\ge0\)

\(\Leftrightarrow-abc\ge\dfrac{4a}{9}+\dfrac{2b}{3}+\dfrac{2c}{3}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}\)

\(\Leftrightarrow-abc\ge-\dfrac{2a}{9}+\dfrac{2}{3}\left(a+b+c\right)-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}=-\dfrac{2a}{9}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc+\dfrac{8}{9}\)

\(\Leftrightarrow-2abc\ge-\dfrac{4a}{9}-\dfrac{4ab}{3}-\dfrac{4ac}{3}-2bc+\dfrac{16}{9}\)

\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{ab}{3}-\dfrac{ac}{3}-bc+\dfrac{16}{9}\)

\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(b+c\right)-bc+\dfrac{16}{9}\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(2-a\right)-\dfrac{\left(b+c\right)^2}{4}+\dfrac{16}{9}\)

\(\Rightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}+\dfrac{a^2}{3}-\dfrac{2a}{3}-\dfrac{\left(2-a\right)^2}{4}+\dfrac{16}{9}\)

\(\Rightarrow ab+bc+ca-2abc\ge\dfrac{a^2}{12}-\dfrac{a}{9}+\dfrac{7}{9}=\dfrac{1}{12}\left(a-\dfrac{2}{3}\right)^2+\dfrac{20}{27}\ge\dfrac{20}{27}\)

\(\Rightarrow ab+bc+ca\ge2abc+\dfrac{20}{27}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\)

Đúng 1 Bình luận (1) Khách Gửi Hủy Nguyễn Việt Lâm Nguyễn Việt Lâm CTV 13 tháng 2 2022 lúc 17:04

2.

Đặt \(\left(a;b;c\right)=\left(x+1;y+1;z+1\right)\Rightarrow\left\{{}\begin{matrix}x;y;z\in\left[0;2\right]\\x+y+z=3\end{matrix}\right.\)

Ta có: \(P=\left(x+1\right)^3+\left(y+1\right)^3+\left(z+1\right)^3\)

\(P=x^3+y^3+z^3+3\left(x^2+y^2+z^2\right)+12\)

Không mất tính tổng quát, giả sử \(x\ge y\ge z\Rightarrow x\ge1\)

\(\Rightarrow\left\{{}\begin{matrix}y^3+z^3=\left(y+z\right)^3-3yz\left(y+z\right)\le\left(y+z\right)^3\\y^2+z^2=\left(y+z\right)^2-2yz\le\left(y+z\right)^2\end{matrix}\right.\)

\(\Rightarrow P\le x^3+\left(3-x\right)^3+3x^2+3\left(3-x\right)^2+12\)

\(\Rightarrow P\le15x^2-45x+66=15\left(x-1\right)\left(x-2\right)+36\le36\)

(Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\))

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(2;1;0\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(1;2;3\right)\) và các hoán vị

Đúng 1 Bình luận (0) Khách Gửi Hủy Rosie
  • Rosie
27 tháng 4 2022 lúc 13:35

xét ba số thực a,b,c thỏa mãn 0 ≤ a,b,c ≤ 2 và a+b+c = 3. Tìm giá trị nhỏ nhất của biểu thức : P = a3+ b3+ c3 + \(\dfrac{\left(ab+bc+ca\right)^3+8}{ab+bc+ca}\)

Xem chi tiết Lớp 9 Toán Violympic toán 9 0 0 Khách Gửi Hủy Nguyễn Hà Quang Minh
  • Nguyễn Hà Quang Minh
5 tháng 4 2023 lúc 22:36

cho a,b,c là số thức dương thỏa mãn a+b+c=1. Chứng minh

2(a3 + b3 + c3) + 3abc ≥ ab + bc + ca

Xem chi tiết Lớp 9 Toán 1 0 Khách Gửi Hủy Nguyễn Lê Phước Thịnh Nguyễn Lê Phước Thịnh CTV 6 tháng 4 2023 lúc 10:20

a+b+c=1; a>0; b>0; c>0

=>a>=b>=c>=0

=>a(a-c)>=b(b-c)>=0

=>a(a-b)(a-c)>=b(a-b)(b-c)

=>a(a-b)(a-c)+b(b-a)(b-c)>=0

mà (a-c)(b-c)*c>=0 và c(c-a)(c-b)>=0 

nên a(a-b)(a-c)+b(b-a)(b-c)+(a-c)(b-c)*c>=0

=>a^3+b^3+c^3+3acb>=a^2b+a^2c+b^2c+b^2a+c^2b+c^2a

=>a^3+b^3+c^3+6abc>=(a+b+c)(ab+bc+ac)

=>a^3+b^3+c^3+6abc>=(ab+bc+ac)

mà a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)

nên 2(a^3+b^3+c^3)+3acb>=a^2+b^2+c^2>=ab+bc+ac(ĐPCM)

Đúng 0 Bình luận (0) Khách Gửi Hủy KIRI NITODO
  • KIRI NITODO
29 tháng 6 2023 lúc 16:15

+) Cho a3 + b3 + c3 = 3abc. CMR: a + b + c = 0 và a = b = c

+) Áp dụng: Cho a3 + b3 + c3 = 3abc, vào bài toán:

Tính giá trị của biểu thức P= \(\dfrac{a+b}{c}\cdot\dfrac{b+c}{a}\cdot\dfrac{c+a}{b}\)

Xem chi tiết Lớp 8 Toán Bài 5: Những hằng đẳng thức đáng nhớ (Tiếp) 1 0 Khách Gửi Hủy Akai Haruma Akai Haruma Giáo viên 29 tháng 6 2023 lúc 16:54

Bài 1: 

$a^3+b^3+c^3=3abc$

$\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0$

$\Leftrightarrow [(a+b)^3+c^3]-[3ab(a+b)+3abc]=0$

$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0$$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2-3ab]=0$

$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0$

$\Rightarrow a+b+c=0$ hoặc $a^2+b^2+c^2-ab-bc-ac=0$

Xét TH $a^2+b^2+c^2-ab-bc-ac=0$

$\Leftrightarrow 2(a^2+b^2+c^2)-2(ab+bc+ac)=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$$\Rightarrow a-b=b-c=c-a=0$

$\Leftrightarrow a=b=c$

Vậy $a^3+b^3+c^3=3abc$ khi $a+b+c=0$ hoặc $a=b=c$

Áp dụng vào bài:

Nếu $a+b+c=0$

$A=\frac{-c}{c}+\frac{-b}{b}+\frac{-a}{a}=-1+(-1)+(-1)=-3$

Nếu $a=b=c$

$P=\frac{a+a}{a}+\frac{b+b}{b}+\frac{c+c}{c}=2+2+2=6$

Đúng 3 Bình luận (0) Khách Gửi Hủy

Từ khóa » Cho A B C 0 Cmr A^3/b+b3/c+c^3/a =ab+bc+ca