Cho A,b,c Khác 0 Và A + B + C = 0. Rút Gọn Biểu Thức: \(A=\frac{a^2}{a ...

Học liệu Hỏi đáp Đăng nhập Đăng ký
  • Học bài
  • Hỏi bài
  • Kiểm tra
  • ĐGNL
  • Thi đấu
  • Thư viện số
  • Bài viết Cuộc thi Tin tức Blog học tập
  • Trợ giúp
  • Về OLM

Chính thức mở đề thi thử tốt nghiệp THPT trên máy tính từ 27/12/2025, xem ngay.

OLM Class tuyển sinh lớp bứt phá học kỳ II! Đăng ký ngay

  • Mẫu giáo
  • Lớp 1
  • Lớp 2
  • Lớp 3
  • Lớp 4
  • Lớp 5
  • Lớp 6
  • Lớp 7
  • Lớp 8
  • Lớp 9
  • Lớp 10
  • Lớp 11
  • Lớp 12
  • ĐH - CĐ
K Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xác nhận câu hỏi phù hợp
Chọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip
  • Tất cả
  • Mới nhất
  • Câu hỏi hay
  • Chưa trả lời
  • Câu hỏi vip
T Tung 16 tháng 11 2015 - olm

Cho a,b,c khác 0 và a + b + c = 0.

            Rút gọn biểu thức:  \(A=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)

#Hỏi cộng đồng OLM #Toán lớp 8 2 NT Nguyễn Thị Thùy Dương 16 tháng 11 2015

+ v ì a+b+c =0

                     => a2 =b2 +c2 + 2bc =>  a2 -b2 - c2 = 2bc 

                   => b2 =a2 + c2 +2ac  => b2 -a2 - c2 = 2bc 

                   =>c2 =a2 +b2 +2ab  => c2 - a2 -b2 = 2ab

        Và : a3 = - ( b+c)3 =- b3 - c3   - 3bc( b+c)  

              a3 +b3 +c3 =  3abc

Ta có 

\(Q=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)

Đúng(0) QN Quách Như ý 22 tháng 12 2021

hello 

Đúng(0) Xem thêm câu trả lời Các câu hỏi dưới đây có thể giống với câu hỏi trên TT Thủ Thủy 12 tháng 4 2019 - olm

Cho a + b + c = 0 và a, b, c đều khác 0. Rút gọn biểu thức:

\(A=\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ac}{c^2+a^2-b^2}\)

#Hỏi cộng đồng OLM #Toán lớp 8 3 DL Đức Lộc 12 tháng 4 2019

Có a + b + c = 0

=> a + b = - c

=> (a + b)2 = c2

=> a2 + b2 + 2ab = c2

=> a2 + b2 - c2 = - 2ab

Tương tự, b2 + c2 - a2 = - 2bc và c2 + a2 - b2 = - 2ca

Do đó \(A=\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}=-\frac{3}{2}\)

Đúng(0) GL ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ 12 tháng 4 2019

a+b+c=0=>a+b=-c=>a2+b2+2ab=c2=>a2+b2-c2=-2ab

Tương tự b2+c2-a2=-2bc,c2+a2-b2=-2ac

=>\(A=\frac{-ab}{2ab}+\frac{-bc}{2bc}+\frac{-ca}{2ca}=\frac{-3}{2}\)

Đúng(0) Xem thêm câu trả lời OD oát đờ 13 tháng 11 2016 - olm

Cho a + b + c = 0 với a,b,c khác 0. Rút gọn biểu thức:

\(\frac{ab}{a^2+b^2-c^2}\)  +  \(\frac{bc}{b^2+c^2-a^2}\)+   \(\frac{ac}{c^2+a^2-b^2}\)

#Hỏi cộng đồng OLM #Toán lớp 8 4 AN alibaba nguyễn 13 tháng 11 2016

Ta có: a + b = c <=> a2 + b2 + 2ab = c2 <=> a2 + b2 - c2 = - 2ab

Tương tự: a2 + c2 - b2 = - 2ac

b2 + c2 - a2 = - 2bc

Thế vào ta được

\(\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ac}{a^2+c^2-b^2}=-\frac{ab}{2ab}-\frac{bc}{2bc}-\frac{ac}{2ac}=-6\)

Đúng(0) KS Kudo Shinichi 13 tháng 3 2017

=-6 ngo như bù

Đúng(0) Xem thêm câu trả lời VT Võ Trương Anh Thư 4 tháng 7 2016 - olm

cho a,b,c khác nhau, khác 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) Rút gọn biểu thức: N=\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)

#Hỏi cộng đồng OLM #Toán lớp 8 1 DN Đặng Ngọc Quỳnh 23 tháng 11 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow abc.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\Leftrightarrow\hept{\begin{cases}bc=-\left(ab+ac\right)\\ab=-\left(bc+ac\right)\\ac=-\left(bc+ab\right)\end{cases}}\)

Ta có: \(a^2+2bc=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=\left(a-b\right)\left(a-c\right)\)

Tương tự \(b^2+2ac=\left(b-a\right)\left(b-c\right);c^2+2ab=\left(c-a\right)\left(c-b\right)\)

\(\Leftrightarrow N=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-a\right)\left(b-c\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a^2-b^2\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)

Đúng(0) T thu 24 tháng 6 2018 - olm

Cho a,b,c đôi một khác nhau và khác 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Rút gọn biểu thức: \(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)

#Hỏi cộng đồng OLM #Toán lớp 8 2 NT nguyễn thị huyền anh 24 tháng 6 2018

bài này có trong câu hỏi tương tự nhé bạn

Đúng(0) S ST 24 tháng 6 2018

Ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=0\)

\(\Leftrightarrow ab+bc+ac=0\Rightarrow\hept{\begin{cases}ab=-bc-ac\\bc=-ac-ab\\ac=-ab-bc\end{cases}}\)(*)

Thay (*) vào M ta được:

\(M=\frac{1}{a^2+bc-ab-ac}+\frac{1}{b^2+ac-ab-bc}+\frac{1}{c^2+ab-bc-ac}\)

\(=\frac{1}{a\left(a-b\right)-c\left(a-b\right)}+\frac{1}{a\left(c-b\right)-b\left(c-b\right)}+\frac{1}{c\left(c-a\right)-b\left(c-a\right)}\)

\(=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(a-b\right)\left(c-b\right)}-\frac{1}{\left(c-b\right)\left(a-c\right)}\)

\(=\frac{c-b}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}-\frac{a-b}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}\)

\(=\frac{c-b+a-c-a+b}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=0\)

Vậy M = 0

Đúng(0) Xem thêm câu trả lời DT Duong Thuc Hien 24 tháng 6 2018 - olm

Cho a,b,c đôi một khác nhau và khác 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\). Rút gọn biểu thức:

\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)

#Hỏi cộng đồng OLM #Toán lớp 8 0 NK Nguyễn Khánh Ly 20 tháng 3 2017 - olm

Cho a+b+c=0 và abc \(\ne\)0

Rút gọn biểu thức \(C=\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)

#Hỏi cộng đồng OLM #Toán lớp 8 3 TN Thảo Nguyên Xanh 20 tháng 3 2017

 C=\(\frac{ab}{a^2+\left(b-c\right)\left(c+b\right)}+\frac{bc}{b^2+\left(c-a\right)\left(c+a\right)}\)+\(\frac{ac}{c^2+\left(a-b\right)\left(a+b\right)}\)

Vì a+b+c=0 =>-a=b+c ; -c=a+b ; -b=a+c

=>C=\(\frac{ab}{a^2-a\left(b-c\right)}+\frac{bc}{b^2-b\left(c-a\right)}+\frac{ac}{c^2-c\left(a-b\right)}\)

=\(\frac{ab}{a\left(a-b+c\right)}+\frac{bc}{b\left(b-c+a\right)}+\frac{ac}{c\left(c-a+b\right)}\)

=\(\frac{b}{-2b}+\frac{c}{-2c}+\frac{a}{-2a}\)

=\(\frac{-3}{2}\)

Đúng(0) NK Nguyễn Khánh Ly 20 tháng 3 2017

thanks

Đúng(0) Xem thêm câu trả lời UN Út Nhỏ Jenny 12 tháng 5 2018 - olm

Cho a+b+c=0 và a.b.c \(\ne\)0. Rút gọn biểu thức:

\(Q=\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ac}{c^2+a^2-b^2}\)

help meeeee 

#Hỏi cộng đồng OLM #Toán lớp 8 5 HP hung pham tien 12 tháng 5 2018

Trong phần câu hỏi tương tự có nhé cậu !

Đúng(0) DQ Đinh quang hiệp 12 tháng 5 2018

\(a+b+c=0\Rightarrow a+b=-c;a+c=-b;b+c=-a\)

ta có:

\(Q=\frac{ab}{\left(a^2-c^2\right)+b^2}+\frac{bc}{\left(b^2-a^2\right)+c^2}+\frac{ac}{\left(c^2-b^2\right)+a^2}\)

    \(=\frac{ab}{\left(a-c\right)\left(a+c\right)+b^2}+\frac{bc}{\left(b-a\right)\left(b+a\right)+c^2}+\frac{ac}{\left(c-b\right)\left(c+b\right)+a^2}\)

\(=\frac{ab}{-b\left(a-c\right)+\left(-b\right)^2}+\frac{bc}{-c\left(b-a\right)+\left(-c\right)^2}+\frac{ac}{-a\left(c-b\right)+\left(-a\right)^2}\)

\(=\frac{ab}{-b\left(a-c-b\right)}+\frac{bc}{-c\left(b-a-c\right)}+\frac{ac}{-a\left(c-b-a\right)}\)

\(=\frac{ab}{-\left(a-\left(c+b\right)\right)}+\frac{bc}{-\left(b-\left(a+c\right)\right)}+\frac{ac}{-\left(c-\left(b+a\right)\right)}=\frac{ab}{-\left(a--a\right)}+\frac{bc}{-\left(b--b\right)}+\frac{ac}{-\left(c--c\right)}\)

\(=\frac{ab}{-2a}+\frac{bc}{-2b}+\frac{ac}{-2c}=\frac{b}{-2}+\frac{c}{-2}+\frac{a}{-2}=\frac{b+c+a}{-2}=\frac{0}{-2}=0\)

vậy Q=0

Đúng(0) Xem thêm câu trả lời HT HaiBa thcs 3 tháng 8 2017 - olm

Cho a+b+c=0 và a,b,c khác 0.Rút gọn biểu thức

M=\(\frac{2ab}{a^2+\left(b+c\right)\left(b-c\right)}+\frac{2bc}{b^2+\left(c+a\right)\left(c-a\right)}+\frac{2ca}{c^2+\left(a+b\right)\left(a-b\right)}\)

#Hỏi cộng đồng OLM #Toán lớp 8 1 VT Võ Thị Quỳnh Giang 3 tháng 8 2017

ta có : a+b+c=0=>a+b=-c ; b+c=-a ; a+c=-b 

ta có: M= \(\frac{2ab}{a^2+\left(b+c\right)\left(b-c\right)}+\frac{2bc}{b^2+\left(c+a\right)\left(c-a\right)}+\frac{2ca}{c^2+\left(a+b\right)\left(a-b\right)}\)

M=\(\frac{2ab}{a^2-a\left(b-c\right)}+\frac{2bc}{b^2-b\left(c-a\right)}+\frac{2ca}{c^2-c\left(a-b\right)}\)

M=\(\frac{2ab}{a\left(a-b+c\right)}+\frac{2bc}{b\left(b-c+a\right)}+\frac{2ca}{c\left(c-a+b\right)}\)

M=\(\frac{2ab}{-ab+\left(a+c\right)}+\frac{2bc}{-bc+\left(a+b\right)}+\frac{2ac}{-ac+\left(b+c\right)}\)

M=\(\frac{2ab}{-2ab}+\frac{2bc}{-2bc}+\frac{2ca}{-2ca}\)

M=-1-1-1=-3

Vậy với a+b+c=0 thì M=-3

Đúng(0) PT phùng thị thảo 2 tháng 1 2017 - olm

cho a+b+c=0 và a, b, c đều khác 0. Rút gọn biểu thức:

\(\frac{2ab}{a^2+\left(b+c\right)\left(b-c\right)}+\frac{2bc}{b^2+\left(c+a\right)\left(c-a\right)}+\frac{2ca}{c^2+\left(a+b\right)\left(a-b\right)}\)

#Hỏi cộng đồng OLM #Toán lớp 8 0 NQ Nguyễn Quang Tùng 19 tháng 12 2016 - olm

cho a+b+c=0 ( a khác 0 , b khác 0 , c khác 0)

tính giá trị biểu thức \(\frac{a^2}{a^2-b^2-c^2}\)\(\frac{b^2}{b^2-c^2-a^2}\)+\(\frac{c^2}{c^2-a^2-b^2}\)

#Hỏi cộng đồng OLM #Toán lớp 8 2 NT Ngô Thị Yến 19 tháng 12 2016

http://diendantoanhoc.net/topic/152549-t%C3%ADnh-fraca2a2-b2-c2-fracb2b2-c2-a2fracc2c2-b2-a2/

Đúng(0) AN alibaba nguyễn 19 tháng 12 2016

Ta có: \(a+b+c=0\)

\(\Rightarrow1\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2+b^2=-2ab+c^2\\b^2+c^2=-2bc+a^2\\c^2+a^2=-2ac+b^2\end{cases}}\)

\(\Rightarrow1A=\frac{a^2}{a^2+2bc-a^2}+\frac{b^2}{b^2+2ac-b^2}+\frac{c^2}{c^2+2ab-c^2}\)

\(=\frac{a^3+b^3+c^3}{2abc}=\frac{a^3+b^3+c^3-3abc+3abc}{2abc}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{2abc}\)

\(=\frac{3}{2}\)

Đúng(0) Xem thêm câu trả lời Xếp hạng Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên
  • Tuần
  • Tháng
  • Năm
  • SV Sinh Viên NEU 14 GP
  • PT Phạm Thị Minh Phương 4 GP
  • QT Quoc Tran Anh Le 4 GP
  • O ◥◣︿◢◤𝓷𝓪𝓶𝓴𝓱ô𝓷𝓰𝓷𝓱â𝔂╰(*°▽°*)╯ 4 GP
  • NQ Nguyễn Quỳnh Chi 2 GP
  • NT Nguyễn Thị Minh Hằng 2 GP
  • HN Hiền Nguyễn Thị 2 GP
  • A 𐙚⋆°.CHâU~Nè𐙚 2 GP
  • PD Phạm Duy Kiên 2 GP
  • NL Nguyễn Lê Phước Thịnh 2 GP
Học liệu Hỏi đáp Link rút gọn Link rút gọn Học trực tuyến OLM Để sau Đăng ký
Các khóa học có thể bạn quan tâm
Mua khóa học Tổng thanh toán: 0đ (Tiết kiệm: 0đ) Tới giỏ hàng Đóng
Yêu cầu VIP

Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.

Từ khóa » Cho A B C 0 Và A Khác 1