Cho Các Hàm Số \(f\left( X \right) = {\sin ^4}x + {\cos ^4}x ...

YOMEDIA NONE Cho các hàm số \(f\left( x \right) = {\sin ^4}x + {\cos ^4}x,\,\,g\left( x \right) = {\sin ^6}x + {\cos ^2}x\). ADMICRO
  • Câu hỏi:

    Cho các hàm số \(f\left( x \right) = {\sin ^4}x + {\cos ^4}x,\,\,g\left( x \right) = {\sin ^6}x + {\cos ^2}x\). Tính biểu thức \(3f'\left( x \right) - 2g'\left( x \right) + 2\)

    • A. 0
    • B. 2
    • C. 1
    • D. 3

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có \(f\left( x \right) = {\sin ^4}x + {\cos ^4}x = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} - 2{\sin ^2}x{\cos ^2}x\)

    \( = 1 - \frac{1}{2}{\sin ^2}2x = 1 - \frac{1}{4}\left( {1 - \cos 4x} \right) = \frac{3}{4} + \frac{1}{4}\cos 4x \Rightarrow f'\left( x \right) = - \sin 4x\)

    Ta có \(\,g\left( x \right) = {\sin ^6}x + {\cos ^2}x = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3} - 3{\sin ^2}x{\cos ^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)\)

    \( = 1 - \frac{3}{4}{\sin ^2}2x = 1 - \frac{3}{8}\left( {1 - \cos 4x} \right) = \frac{5}{8} + \frac{3}{8}\cos 4x \Rightarrow g'\left( x \right) = - \frac{3}{2}\sin 4x\)

    Do đó \(3f'\left( x \right) - 2g'\left( x \right) + 2 = 3.\left( { - \sin 4x} \right) - 2\left( { - \frac{3}{2}\sin 4x} \right) + 2 = 2\).

    Lưu ý: Đây là câu hỏi tự luận.
    ATNETWORK

Mã câu hỏi: 52472

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

  • 40 câu trắc nghiệm ôn tập chương Đạo hàm Giải tích lớp 11

    40 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

CÂU HỎI KHÁC

  • Cho hàm số \(y = f\left( x \right)\) xác định trên R thỏa mãn \(\mathop {\lim }\limits_{x \to 3} {\mkern 1mu} \frac{{f\left( x \r
  • Cho hàm số \(y = 2{x^2} - 2015.\) Tính \(\frac{{\Delta y}}{{\Delta x}}\) của hàm số theo \(x\) và \(\Delta x\)
  • Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{3 - \sqrt {4 - x} }}{4}{\mkern 1mu} {\mkern 1mu} khi{\mkern 1mu} {\mkern 1mu} x \n
  • Cho hàm số \(y = c{\rm{o}}{{\rm{s}}^2}x.\) Khi \({y^{\left( 3 \right)}}\left( {\frac{\pi }{3}} \right)\) bằng:
  • Tính đạo hàm của hàm số \(y = \sin 2x - \cos x\).
  • Hàm số \(y = {\frac{{\left( {x - 2} \right)}}{{1 - x}}^2}\) có đạo hàm là:
  • Tính đạo hàm của hàm số \(f(x) = \sin 2x - {\cos ^2}3x\)
  • Đạo hàm của hàm số \(y = {\left( {{x^2} - 3x + 2} \right)^{\sqrt 3 }}\) là
  • Đạo hàm của hàm số \(f(x) = \sqrt {2 - 3{x^2}} \) bằng biểu thức nào sau đây?
  • Cho hàm số \(f(x) = {x^3} - 3{x^2} + x + 1\). Giá trị \(f\left( 1 \right)\) bằng:
  • Đạo hàm của hàm số \(y = \frac{{2 - {x^2} + 3{x^3}}}{3}\) tại \({x_0} = 1\) bằng
  • Cho chuyển động thẳng xác định bởi phương trình: \(S = {t^2} - 2t + 3,\) trong đó t được tính bằng giây và S được
  • Cho hàm số \(f\left( x \right) = \sqrt {8 + x} \) Tính \(f\left( 1 \right) + 12f\left( 1 \right)\)
  • Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}{x^2} + 1,x \ge 1\\2x,x < 1\end{array} \right.\) Mệnh đề sai là
  • Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{3 - {x^2}}}{2}{\rm{ khi }}x < 1\\\frac{1}{x}{\rm{        &
  • Tính đạo hàm cấp hai của hàm số \(f\left( x \right) = {x^3} + {x^2} + 1\) tại điểm \(x=2\)
  • Tính đạo hàm của hàm số \({\left( {{x^3} + 2{x^2}} \right)^{10}}.\)
  • Cho \({\left( {\frac{{3 - 2x}}{{\sqrt {4x - 1} }}} \right)^\prime } = \frac{{ax - b}}{{\left( {4x - 1} \right)\sqrt {4x - 1} }}.
  • Cho hàm số \(y = f\left( x \right) = \frac{{2x + 1}}{{1 - x}}\).
  • Cho hàm số \(f\left( x \right) = \frac{1}{3}{x^3} - 2\sqrt 2 {x^2} + 8x - 1.
  • Đạo hàm của hàm số \(y = \frac{{ - {x^2} + 2x + 3}}{{{x^3} - 2}}\) là:
  • Cho hàm số \(f\left( x \right) = \frac{{{x^2}}}{{ - x + 1}}.\) Tìm \({f^{\left( {30} \right)}}\left( x \right).\)
  • Hàm số \(y = \cos x\) có tính chất nào sau đây:
  • Cho hàm số \(y = {\sin ^2}x.\) Khẳng định nào sau đây đúng?
  • Cho hàm số \(y = \sqrt {{x^2} - 1} .\) Nghiệm của phương trình \(y.y = 2x{\rm{ + }}1\) là
  • Cho chuyển động xác định bởi phương trình \(S = {t^3} - 3{t^2} - 9t,\) trong đó t được tính bằng giây và S được tín
  • Một chất điểm chuyển động theo quy luật \(S =  - \frac{1}{3}{t^3} + 4{t^2} + 9t\) với t (giây) là khoảng thời gia
  • Một chuyển động thẳng xác định bởi phương trình \(s = {t^3} - 3{t^2} + 5t + 2\), trong đó t tính bằng giây và s tính bằng
  • Một chất điểm chuyển động   theo phương trình \(S =  - 2{t^3} + 18{t^2} + 2t{\rm{ }} + 1,\) trong đó t tính bằ
  • Tính đạo hàm của hàm số \(y = {\log _5}\left( {{x^2} + 2} \right).\)
  • Cho hàm số \(f\left( x \right) = \sqrt { - 5{x^2} + 14x - 9} .
  • Tìm \(m\) để phương trình \(f\left( x \right) = 0\) có nghiệm. Biết \(f\left( x \right) = m\cos x + 2\sin x - 3x + 1.\)
  • Đạo hàm bậc 21 của hàm số \(f\left( x \right) = c{\rm{os}}\left( {x + a} \right)\) là
  • Cho các hàm số \(f\left( x \right) = {\sin ^4}x + {\cos ^4}x,\,\,g\left( x \right) = {\sin ^6}x + {\cos ^2}x\).
  • Cho hàm số \(f\left( x \right) = \sqrt {{x^2} - x} .
  • Hệ số góc của tiếp tuyến của đồ thị hàm số \(y = \frac{{3x - 1}}{{1 - 2x}}\) tại điểm của hoành độ x = 1 là:
  • Cho hàm số \(y = {x^3} - 3{x^2} + 10\,\,\left( C \right).
  • Phương trình tiếp tuyến của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 1}}\), biết tiếp tuyến song song với đường thẳng \
  • Cho hàm số có đồ thị \(\left( C \right):y = 2{x^3} - 3{x^2} + 1\).
  • Gọi M là giao điểm của đồ thị hàm số \(y = \frac{{x + 1}}{{x - 2}}\) với trục hoành.
ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 11

Toán 11

Toán 11 Kết Nối Tri Thức

Toán 11 Chân Trời Sáng Tạo

Toán 11 Cánh Diều

Giải bài tập Toán 11 KNTT

Giải bài tập Toán 11 CTST

Trắc nghiệm Toán 11

Ngữ văn 11

Ngữ Văn 11 Kết Nối Tri Thức

Ngữ Văn 11 Chân Trời Sáng Tạo

Ngữ Văn 11 Cánh Diều

Soạn Văn 11 Kết Nối Tri Thức

Soạn Văn 11 Chân Trời Sáng Tạo

Văn mẫu 11

Tiếng Anh 11

Tiếng Anh 11 Kết Nối Tri Thức

Tiếng Anh 11 Chân Trời Sáng Tạo

Tiếng Anh 11 Cánh Diều

Trắc nghiệm Tiếng Anh 11 KNTT

Trắc nghiệm Tiếng Anh 11 CTST

Tài liệu Tiếng Anh 11

Vật lý 11

Vật lý 11 Kết Nối Tri Thức

Vật Lý 11 Chân Trời Sáng Tạo

Vật lý 11 Cánh Diều

Giải bài tập Vật Lý 11 KNTT

Giải bài tập Vật Lý 11 CTST

Trắc nghiệm Vật Lý 11

Hoá học 11

Hoá học 11 Kết Nối Tri Thức

Hoá học 11 Chân Trời Sáng Tạo

Hoá Học 11 Cánh Diều

Giải bài tập Hoá 11 KNTT

Giải bài tập Hoá 11 CTST

Trắc nghiệm Hoá học 11

Sinh học 11

Sinh học 11 Kết Nối Tri Thức

Sinh Học 11 Chân Trời Sáng Tạo

Sinh Học 11 Cánh Diều

Giải bài tập Sinh học 11 KNTT

Giải bài tập Sinh học 11 CTST

Trắc nghiệm Sinh học 11

Lịch sử 11

Lịch Sử 11 Kết Nối Tri Thức

Lịch Sử 11 Chân Trời Sáng Tạo

Giải bài tập Sử 11 KNTT

Giải bài tập Sử 11 CTST

Trắc nghiệm Lịch Sử 11

Địa lý 11

Địa Lý 11 Kết Nối Tri Thức

Địa Lý 11 Chân Trời Sáng Tạo

Giải bài tập Địa 11 KNTT

Giải bài tập Địa 11 CTST

Trắc nghiệm Địa lý 11

GDKT & PL 11

GDKT & PL 11 Kết Nối Tri Thức

GDKT & PL 11 Chân Trời Sáng Tạo

Giải bài tập KTPL 11 KNTT

Giải bài tập KTPL 11 CTST

Trắc nghiệm GDKT & PL 11

Công nghệ 11

Công nghệ 11 Kết Nối Tri Thức

Công nghệ 11 Cánh Diều

Giải bài tập Công nghệ 11 KNTT

Giải bài tập Công nghệ 11 Cánh Diều

Trắc nghiệm Công nghệ 11

Tin học 11

Tin học 11 Kết Nối Tri Thức

Tin học 11 Cánh Diều

Giải bài tập Tin học 11 KNTT

Giải bài tập Tin học 11 Cánh Diều

Trắc nghiệm Tin học 11

Cộng đồng

Hỏi đáp lớp 11

Tư liệu lớp 11

Xem nhiều nhất tuần

Đề thi giữa HK2 lớp 11

Đề thi HK1 lớp 11

Đề thi giữa HK1 lớp 11

Đề thi HK2 lớp 12

Tôi yêu em - Pu-Skin

Video bồi dưỡng HSG môn Toán

Đề cương HK1 lớp 11

Công nghệ 11 Bài 16: Công nghệ chế tạo phôi

Chí Phèo

Cấp số nhân

Văn mẫu và dàn bài hay về bài thơ Đây thôn Vĩ Dạ

Cấp số cộng

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » đạo Hàm Cấp N Của Sin^4x+cos^4x