Cho Các Hàm Số U = U( X )v = V( X ) Có đạo Hàm Trên Khoảng J Và V( X ...

LUYỆN TẬP TRẮC NGHIỆM 50000+ CÂU HỎI

DÀNH CHO MỌI LỚP 6 ĐẾN 12

TRUY CẬP NGAY XEM CHI TIẾT Cho các hàm số u = u( x )v = v( x ) có đạo hàm trên khoảng J và v( x ) ne 0 với mọi x in J. Mệnh đề Cho các hàm số u = u( x )v = v( x ) có đạo hàm trên khoảng J và v( x ) ne 0 với mọi x in J. Mệnh đề

Câu hỏi

Nhận biết

Cho các hàm số \(u = u\left( x \right),\,\,v = v\left( x \right)\) có đạo hàm trên khoảng J và \(v\left( x \right) \ne 0\) với mọi \(x \in J\). Mệnh đề nào sau đây SAI?

A. \(\left[ {u\left( x \right).v\left( x \right)} \right]' = u'\left( x \right).v\left( x \right) + v'\left( x \right).u\left( x \right)\) B. \(\left[ {\dfrac{{u\left( x \right)}}{{v\left( x \right)}}} \right]' = \dfrac{{u'\left( x \right).v\left( x \right) - v'\left( x \right).u\left( x \right)}}{{{v^2}\left( x \right)}}\) C. \(\left[ {u\left( x \right) + v\left( x \right)} \right]' = u'\left( x \right) + v'\left( x \right)\) D. \(\left[ {\dfrac{1}{{v\left( x \right)}}} \right]' = \dfrac{{v'\left( x \right)}}{{{v^2}\left( x \right)}}\)

Đáp án đúng: D

Lời giải của Tự Học 365

Giải chi tiết:

Đáp án D sai, mệnh đề đúng phải là \(\left[ {\dfrac{1}{{v\left( x \right)}}} \right]' =  - \dfrac{{v'\left( x \right)}}{{{v^2}\left( x \right)}}\).

Chọn D.

Ý kiến của bạn Hủy

Δ

Luyện tập

Câu hỏi liên quan

  • Phương trình có 1 họ nghiệm

    Chi tiết
  • (x = pi   6 + kpi   3;x = pi 

    Chi tiết
  • x = kpi; x = pi/3 + k2pi/3

    Chi tiết
  • #VALUE!

    Chi tiết
  • Phương trình có 1 họ nghiệm

    Chi tiết
  • Phương trình có 1 họ nghiệm

    Chi tiết
  • Phương trình có 2 họ nghiệm là: x = pi +kpi; x = k2pi/3

    Chi tiết
  • Phương trình có 1 họ nghiệm

    Chi tiết
  • x = pi/2 + k2 pi                                      x = p

    Chi tiết
  • Phương trình có 1 họ nghiệm

    Chi tiết

Đăng ký

Năm sinh 20012002200320042005200620072008200920102011201220132014201520162017201820192020 hoặc Đăng nhập nhanh bằng: đăng nhập bằng google (*) Khi bấm vào đăng ký tài khoản, bạn chắc chắn đã đoc và đồng ý với Chính sách bảo mật và Điều khoản dịch vụ của Tự Học 365.

Từ khóa » đạo Hàm U(x)^v(x)