Cho F(n)=(n2 + N +1 )2 +1 Với N Thuộc N* . Đặt \(p_n=\frac{f_{\left(1 ...

Học liệu Hỏi đáp Đăng nhập Đăng ký
  • Học bài
  • Hỏi bài
  • Kiểm tra
  • ĐGNL
  • Thi đấu
  • Thư viện số
  • Bài viết Cuộc thi Tin tức Blog học tập
  • Trợ giúp
  • Về OLM

(Từ ngày 12/12) Lớp live ôn thi cuối kỳ I hoàn toàn miễn phí - Tham gia ngay!!!

 Mở bộ đề mới - nhận quà VIP liền tay

  • Mẫu giáo
  • Lớp 1
  • Lớp 2
  • Lớp 3
  • Lớp 4
  • Lớp 5
  • Lớp 6
  • Lớp 7
  • Lớp 8
  • Lớp 9
  • Lớp 10
  • Lớp 11
  • Lớp 12
  • ĐH - CĐ
K Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xác nhận câu hỏi phù hợp
Chọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip
  • Tất cả
  • Mới nhất
  • Câu hỏi hay
  • Chưa trả lời
  • Câu hỏi vip
TT Trần Thị Hà Phương 8 tháng 10 2017 - olm

cho f(n)=(n2 + n +1 )2 +1 với n thuộc N* . Đặt \(p_n=\frac{f_{\left(1\right)}\cdot f_{\left(3\right)}\cdot f_{\left(5\right)}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot f_{\left(2n-1\right)}}{f_{\left(2\right)}\cdot f_{\left(4\right)}\cdot f_{\left(6\right)}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot f_{\left(2n\right)}}\)

chứng minh rằng : P1 + P2 +P3 +................+ Pn <1/2

#Hỏi cộng đồng OLM #Toán lớp 9 0 Các câu hỏi dưới đây có thể giống với câu hỏi trên TT Thanh Thảo 5 tháng 4 2017 - olm

Cho phương trình : x2 - mx + 1005m = 0 ( x là ẩn , m là tham số ) có hai nghiệm x1 , x2 .

Tìm giá trị của m để biểu thức M = \(\frac{2\cdot x_1\cdot x_2+2680}{x_1^2+x_2^2+2\left(x_1\cdot x_2+1\right)-1}\)đạt giá trị nhỏ nhất 

#Hỏi cộng đồng OLM #Toán lớp 9 0 HD hong doan 20 tháng 4 2018 - olm

cho a,b là các số dương.Chứng minh:\(\frac{a+b}{\sqrt{a\cdot\left(3a+b\right) }+\sqrt{b\cdot\left(3b+a\right)}}\ge\frac{1}{2}\)

#Hỏi cộng đồng OLM #Toán lớp 9 0 AT Anh Thu 13 tháng 6 2019

1.Chứng minh: \(\frac{1}{2\cdot\sqrt{1}}+\frac{1}{3\cdot\sqrt{2}}+\frac{1}{4\cdot\sqrt{3}}+...+\frac{1}{2012\cdot\sqrt{2011}}+\frac{1}{2013\cdot\sqrt{2012}}\)\(< 2\)

2.Chứng minh: A= \(\frac{1}{3\cdot\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{5\cdot\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{97\cdot\left(\sqrt{48}+\sqrt{49}\right)}\)\(< \frac{1}{2}\)

#Hỏi cộng đồng OLM #Toán lớp 9 2 Y Y 13 tháng 6 2019

2.+ \(\left(2n+1\right)^2=4n^2+4n+1>4n^2+4n\)

\(\Rightarrow2n+1>\sqrt{4n\left(n+1\right)}=2\sqrt{n\left(n+1\right)}\)

+ \(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Do đó : \(A< \frac{1}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{48}}-\frac{1}{\sqrt{49}}\right)\)

\(\Rightarrow A< \frac{1}{2}\)

Đúng(0) Y Y 13 tháng 6 2019

1. + \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)-n}{\left(n+1\right)\sqrt{n}}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}\)

\(< \frac{\left(\sqrt{n+1}-\sqrt{n}\right)\cdot2\sqrt{n+1}}{\sqrt{n}\left(n+1\right)}=2\cdot\frac{n+1-\sqrt{n\left(n+1\right)}}{\left(n+1\right)\sqrt{n}}=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Do đó : \(A< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

\(\Rightarrow A< 2\)

Bài 2 tạm thời chưa nghĩ ra :))

Đúng(0) Xem thêm câu trả lời NT Nguyễn Thiên Nhi 13 tháng 6 2019 - olm

Chứng minh: \(\frac{1}{2\cdot\sqrt{1}}+\frac{1}{3\cdot\sqrt{2}}+\frac{1}{4\cdot\sqrt{3}}+...+\frac{1}{2012\cdot\sqrt{2011}}+\frac{1}{2013\cdot\sqrt{2012}}\)\(< 2\)

Chứng minh: A=\(\frac{1}{3\cdot\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{5\cdot\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{97\cdot\left(\sqrt{48}+\sqrt{49}\right)}\)\(< \frac{1}{2}\)

#Hỏi cộng đồng OLM #Toán lớp 9 1 S ST 13 tháng 6 2019

Đặt B là tên biểu thức

Với mọi n thuộc N*, ta có: 

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\) (*)

Áp dụng (*), ta được: 

\(B< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}+\frac{1}{\sqrt{2012}}-\frac{1}{\sqrt{2013}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{2013}}\right)=2-\frac{1}{\sqrt{2013}}< 2\)

Đúng(0) HB Hoai Bao Tran 16 tháng 12 2017

CMR":

\(\dfrac{1}{3}\cdot\dfrac{4}{6}\cdot\dfrac{7}{9}\cdot.......\cdot\dfrac{\left(3n-2\right)}{3n}\cdot\dfrac{\left(3n+1\right)}{3n+3}< \dfrac{1}{3\sqrt{n+1}}\)

#Hỏi cộng đồng OLM #Toán lớp 9 0 HN Hoa Nguyễn Lệ 12 tháng 6 2018

\(\dfrac{\left(4\times7+2\right)\left(6\times6+2\right)\left(8\times11+2\right)\cdot\cdot\cdot\left(100\times103+2\right)}{\left(5\times8+2\right)\left(7\times10+2\right)\left(9\times12+2\right)\cdot\cdot\cdot\left(99\times102+2\right)}=...\)

#Hỏi cộng đồng OLM #Toán lớp 9 3 HC Hiếu Cao Huy 13 tháng 6 2018

sai đề bn ơi

Đúng(0) TC Trịnh Công Mạnh Đồng 13 tháng 6 2018

Sai phần tử rùi pn ơi

Đúng(0) Xem thêm câu trả lời T Tuấn 14 tháng 8 2017

\(\dfrac{\left(1^4+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)\cdot...\cdot\left(2005^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right)\cdot...\cdot\left(2006^4+\dfrac{1}{4}\right)}\).Viết kết quả dưới dạng phân số .Thanks!

#Hỏi cộng đồng OLM #Toán lớp 9 1 PT Phương Trâm 14 tháng 8 2017

Ta có: \(16a^4+4=16a^4+2.4a^2.2+4-16a^2\)

\(=\left(4a+2\right)^2-16a^2\)

\(=\left(4a+2\right)^2-16a^2\)

\(=\left(4a^2-4a+2\right).\left(4a^2+4a+2\right)\)

\(=\left[\left(2a-1\right)^2+1\right].\left[\left(2a+1\right)^2+1\right]\) ( a \(\in\) N* )

Do đó: \(16a^4+4=\left[\left(2a-1\right)^2+1\right].\left[\left(2a+1\right)^2+1\right]\) ( * )

Thay a lần lượt bằng 1, 2, 3, ..., 2014, ta có:

\(16.1^4+4=\left[\left(2.1-1\right)^2+1\right].\left[\left(2.1+1\right)^2+1\right]=\left(1^2+1\right).\left(3^2+1\right)\)

\(16.2^4+4=\left[\left(2.2-1\right)^2+1\right].\left[\left(2.2+1\right)^2+1\right]=\left(3^2+1\right).\left(5^2+1\right)\)

\(16.3^4+4=\left[\left(2.3-1\right)^2+1\right].\left[\left(2.3+1\right)^2+1\right]=\left(5^2+1\right).\left(7^2+1\right)\)

\(16.4^4+4=\left[\left(2.4-1\right)^2+1\right].\left[\left(2.4+1\right)^2+1\right]=\left(7^2+1\right).\left(9^2+1\right)\)

\(......\)

\(16.2005^4+4=\left[\left(2.2005-1\right)^2+1\right].\left[\left(2.2005+1\right)^2+1\right]=\left(4009^2+1\right).\left(4011^2+1\right)\)

\(16.2006^4+4=\left[\left(2.2006-1\right)^2+1\right].\left[\left(2.2006+1\right)^2+1\right]=\left(4011^2+1\right).\left(4013^2+1\right)\)

Đặt \(T=\dfrac{\left(1^4+\dfrac{1}{4}\right).\left(3^4+\dfrac{1}{4}\right)...\left(2005^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right).\left(4^4+\dfrac{1}{4}\right)...\left(2006^4+\dfrac{1}{4}\right)}\)

\(\Leftrightarrow T=\dfrac{16.\left(1^4+\dfrac{1}{4}\right).16\left(3^4+\dfrac{1}{4}\right)...16\left(2005^4+\dfrac{1}{4}\right)}{16.\left(2^4+\dfrac{1}{4}\right).16\left(4^4+\dfrac{1}{4}\right)...16\left(2006^4+\dfrac{1}{4}\right)}\)

\(\Leftrightarrow T=\dfrac{\left(16.1^4+4\right).\left(16.3^4+4\right)...\left(16.2005^4+4\right)}{\left(16.2^4+4\right).\left(16.4^4+4\right)...\left(16.2006^4+4\right)}\)

\(\Leftrightarrow T=\dfrac{\left(1^2+1\right).\left(3^2+1\right).\left(5^2+1\right)...\left(4009^2+1\right).\left(4011^2+1\right)}{\left(3^2+1\right).\left(5^2+1\right).\left(7^2+1\right)...\left(4011^2+1\right).\left(4013^2+1\right)}\)

\(\Leftrightarrow T=\dfrac{1^2+1}{4013^2+1}\)

\(\Leftrightarrow T=\dfrac{2}{4013^2+1}\)

Đúng(0) T Tuấn 14 tháng 8 2017

cảm ơn bạn rất nhiềuhahahahaoaoa

Đúng(0) AD Âu Dương Thiên Vy 1 tháng 2 2018 - olm

giải hệ phương trình :

a) \(\hept{\begin{cases}x\cdot\left(1+y-x\right)=-2\cdot y^2-y\\x\cdot\left(\sqrt{2\cdot y}-2\right)=y\cdot\left(\sqrt{x-1}-2\right)\end{cases}}\)

b) \(\hept{\begin{cases}1+x\cdot y+\sqrt{x\cdot y}=x\\\frac{1}{x\cdot\sqrt{x}}+y\cdot\sqrt{y}=\frac{1}{\sqrt{x}}+3\cdot\sqrt{y}\end{cases}}\)

Làm hộ mk nhé mk tick cho :))))))))))

#Hỏi cộng đồng OLM #Toán lớp 9 0 AD Âu Dương Thiên Vy 28 tháng 1 2018 - olm

1, Giải hệ phương trình:

\(\hept{\begin{cases}x\cdot\left|x\right|-\left(x+10\right)\cdot\left|x+10\right|=y\cdot\left|y\right|\\y\cdot\left|y\right|-\left(y+10\right)\cdot\left|y+10\right|=z\cdot\left|z\right|\\z\cdot\left|z\right|-\left(z+10\right)\cdot\left|z+10\right|=x\cdot\left|x\right|\end{cases}}\)

Giải hộ mk nhoa mk tick cho !!!!!!!!!

#Hỏi cộng đồng OLM #Toán lớp 9 0 Xếp hạng Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên
  • Tuần
  • Tháng
  • Năm
  • 0D 𓃱⋆⭒˚.⋆🪐ºҩº☞†®üñɕ-đẹρ-†®åî⋆⭒˚.⋆ VIP 4 GP
  • NB Nguyễn Bá Hiếu 4 GP
  • NV ✫⊰ Ngô Vũ ༒ Công Vinh ⊱✫ VIP 4 GP
  • D Đ𝙖̆𝙣𝙜 𝙈𝙞𝙣𝙝 (𝙈𝙚𝙤𝙠𝙤𝙣𝙝𝙤𝙣𝙜𝙪𝙤𝙣𝙜𝙩𝙝𝙪𝙤𝙘) 4 GP
  • TL Truong Lan VIP 4 GP
  • NT Nguyễn Trọng Đạt VIP 2 GP
  • E ElmSunn 2 GP
  • ꧁༒ɴᵍᵘ̛ᵒ̛̀ⁱ_ⁿʰᵘ̛_ᵃⁿʰ_ˣᵘ̛́ⁿᵍ_ᵈᵃ́ⁿᵍ_ᶜᵒ... 2 GP
  • E ✦𝘉é✿𝘤𝘩í𝘱✦ 2 GP
  • SV Sinh Viên NEU 2 GP
Học liệu Hỏi đáp Link rút gọn Link rút gọn Học trực tuyến OLM Để sau Đăng ký
Các khóa học có thể bạn quan tâm
Mua khóa học Tổng thanh toán: 0đ (Tiết kiệm: 0đ) Tới giỏ hàng Đóng
Yêu cầu VIP

Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.

Từ khóa » đặt F(n)=(n^2+n+1)^2+1