Cho Hàm Số Y=f(x) Có đạo Hàm Liên Tục Trên R Thỏa Mãn F'(x) -xf(x) = 0
Có thể bạn quan tâm
Toán học - Lớp 12
Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải !! Bài tâp Hàm số mũ và Logarit từ đề thi Đại Học cực hay có lời giải !! 300 Bài trắc nghiệm Hàm số mũ và Logarit cơ bản, nâng cao có lời giải chi tiết !! 234 bài trắc nghiệm Hàm số mũ và Logarit từ đề thi Đại học cực hay có lời giải !! Đề kiểm tra 1 tiết Chương 3 Giải tích 12 Trường THPT Quỳnh Lưu 1 - Nghệ An năm 2018 - 2019 169 Bài tập Hàm số từ đề thi Đại học có lời giải chi tiết !! Bài tập Hình học tọa độ trong không gian Oxyz cực hay có lời giải !! Đề kiểm tra 1 tiết Chương 3 Giải tích 12 Trường THPT Phước Vĩnh - Bình Dương năm học 2018 - 2019 186 Bài trắc nghiệm Nguyên hàm, tích phân cực hay có lời giải !! Đề kiểm tra 1 tiết Số phức Toán 12 Trường THPT Ông Ích Khiêm - Đà Nẵng năm 2017 - 2018 Đề kiểm tra 1 tiết Chương 3 Hình học 12 Trường THPT An Phước - Ninh Thuận năm 2018 Đề kiểm tra 1 tiết Chương 3 Hình học 12 Trường THPT Ông Ích Khiêm - Đà Nẵng năm học 2017 - 2018 210 Bài tập hàm số cực hay có lời giải chi tiết !! Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết !! Đề kiểm tra 1 tiết Chương 3 Hình học 12 Trường THPT Phước Vĩnh - Bình Dương năm học 2018 - 2019 Đề kiểm tra 1 tiết Số phức Toán 12 Trường THPT Tam Phước năm học 2017-2018 Đề kiểm tra 1 tiết Số phức Toán lớp 12 Cơ bản năm học 2017 - 2018 75 Bài trắc nghiệm Hàm số mũ và Logarit có lời giải chi tiết !! Đề kiểm tra 1 tiết Chương 3 Giải tích 12 Trường THPT Tràng Định năm học 2017 - 2018 333 Bài trắc nghiệm Hình học Khối đa diện cực hay có lời giải chi tiết !! 264 Bài trắc nghiệm Khối đa diện cực hay có lời giải !! 200 bài tập Số phức cực hay có lời giải chi tiết !! Đề kiểm tra 1 tiết Số phức Toán 12 Trường PT Dân tộc nội trú Thái Nguyên năm 2017 - 2018 300 Bài trắc nghiệm hàm số cơ bản, nâng cao cực hay có lời giải !! Đề thi thử THPT QG năm 2019 môn Toán Trường Chuyên Quốc học Huế lần 1Câu hỏi :
Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ thỏa mãn f'(x) -xf(x) = 0, fx>0,∀x∈ℝ và f(0) = 1. Giá trị của f(1) bằng?
A. 1e.
B. 1e.
C. e.
D. e.
* Đáp án
C
* Hướng dẫn giải
Đáp án C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải !!
Số câu hỏi: 237Lớp 12
Toán học
Toán học - Lớp 12
Bạn có biết?
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưTâm sự Lớp 12
Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :)) Tiểu học Lớp 6 Lớp 7 Lớp 8 Lớp 9 Lớp 10 Lớp 11 Lớp 12 Hóa học Tài liệu Đề thi & kiểm tra Câu hỏi Đọc truyện chữ Nghe truyện audio Công thức nấu ăn Hỏi nhanhLiên hệ hợp tác hoặc quảng cáo: gmail
Điều khoản dịch vụ
Copyright © 2021 HOCTAPSGK
Từ khóa » Nguyên Hàm Của Xf'(x)
-
Cho Tích Phân Từ 0 đến 1 Xf'(x)dx = 1 Và F(1) = 10
-
Cho Tích Phân Từ 0 đến 1 Xf'(x)dx = 1 Và F(1) = 10
-
Cho Hàm F(x) Liên Tục Trên R Và Tích Phân Từ 0 đến 1 Của X.f(x)dx=5
-
Tích Phân Hàm ẩn Chứa F(x), F'(x) - Chủ Đề Toán 12 - Để Học Tốt
-
Xét Hàm Số Fx = E^x + Int0^1 Xf X Dx Giá Trị Của Fl - Tự Học 365
-
Pi 2 ) Và F( X ) Là Một Nguyên Hàm Của Hàm Số Xf'( X ) Thỏa Mãn F
-
Help Tớ Với Nha Mn Tích Phân Từng Phần ạ
-
Cho Nguyên Hàm ( (2xf( ((x^2)) )) ). Nếu đặt (t = (x^2) ) Thì:
-
Tính Tích Phân \(I = \int\limits_0^1 {xf'(2x)dx} \)? - HOC247
-
Bài Tập VD – VDC Nguyên Hàm, Tích Phân Và ứng Dụng ...
-
Cho (f( X ) = (x)((((cos )^2)x)) ) Trên (( ( - (pi )(2)
-
Cho Hàm Số Y=f(x) Có đạo Hàm Liên Tục Trên [1;2], Thỏa Mãn F(x)=xf'(x)