Cho Hàm Số \(y = \frac{{\ln X – 4}}{{\ln X – 2m}}\) Với M Là Tham Số. Gọi ...

YOMEDIA NONE Cho hàm số \(y = \frac{{\ln x – 4}}{{\ln x – 2m}}\) với m là tham số. Gọi S là tập hợp các giá trị nguyên dương của m để hàm số đồng biến trên khoảng \(\left( {1;{\rm{e}}} \right)\). Tìm số phần tử của S. ADMICRO
  • Câu hỏi:

    Cho hàm số \(y = \frac{{\ln x – 4}}{{\ln x – 2m}}\) với m là tham số. Gọi S là tập hợp các giá trị nguyên dương của m để hàm số đồng biến trên khoảng \(\left( {1;{\rm{e}}} \right)\). Tìm số phần tử của S.

    • A. 3
    • B. 2
    • C. 1
    • D. 4

    Lời giải tham khảo:

    Đáp án đúng: C

    \(y = f\left( x \right) = \frac{{\ln x – 4}}{{\ln x – 2m}}\)

    Đặt \(t = \ln x\), điều kiện \(t \in \left( {0;1} \right)\)

    \(g\left( t \right) = \frac{{t – 4}}{{t – 2m}}; g’\left( t \right) = \frac{{ – 2m + 4}}{{{{\left( {t – 2m} \right)}^2}}}\)

    Để hàm số \(f\left( x \right)\) đồng biến trên \(\left( {1;e} \right)\) thì hàm số \(g\left( t \right)\) đồng biến trên \(\left( {0;1} \right) \Leftrightarrow g’\left( t \right) > 0,\;t \in \left( {0;1} \right) \Leftrightarrow \frac{{ – 2m + 4}}{{{{\left( {t – 2m} \right)}^2}}} > 0,t \in \left( {0;1} \right)\)

    \( \Leftrightarrow \left\{ \begin{array}{l} – 2m + 4 > 0\\2m \notin \left( {0;1} \right)\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\frac{1}{2} \le m < 2\\m \le 0\end{array} \right.\)

    S là tập hợp các giá trị nguyên dương \( \Rightarrow S = \left\{ 1 \right\}\).

    Vậy số phần tử của tập S là 1.

    Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
    ATNETWORK

Mã câu hỏi: 274349

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

  • Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Trưng Vương lần 3

    50 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

CÂU HỎI KHÁC

  • Câu 1. Diện tích xung quanh của hình nón có độ dài đường sinh \(l\) và bán kính \(r\) bằng
  • Cho cấp số cộng \(\left( {{u}_{n}} \right)\) với \({{u}_{1}}=2\) và \({{u}_{2}}=8\). Công sai của cấp số cộng bằng
  • Cho hàm số \(y=f(x)\) có bảng biến thiên như hình bên. ​ Hàm số đã cho đồng biến trên khoảng nào dưới đây?
  • Có bao nhiêu cách chọn hai hs từ một nhóm gồm 8 học sinh?
  • Cho hs \(y=f\left( x \right)\) và \(y=g\left( x \right)\) liên tục trên đoạn \(\left[ 1;5 \right]\) sao cho \(\int\limits_{1}^{5}{f\lef
  • Cho hàm số \(y=f(x)\) có đồ thị là đường cong trong hình vẽ bên. Hàm số \(f(x)\) đạt cực đại tại điểm nào sau đây?
  • Cho a là số thực dươg tùy ý, \(\ln \frac{e}{{{a}^{2}}}\) bằng
  • Trong không gian \(Oxyz\), cho đường thẳng \(d:\frac{x+1}{1}=\frac{z-1}{-1}=\frac{y-3}{2}\). Một vectơ chỉ phương của \(d\) là
  • Nghiệm của phương trình 2x-3 = 0,5 là
  • Cho hàm số bậc bốn \(y=f\left( x \right)\) có đồ thị như hình dưới đây. Số nghiệm của phương trình \(3f\left( x \right)+1=0\) là
  • Tiệm cận đứng của đồ thị hs \(y=\frac{x-1}{x+1}\) là
  • Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x-2y+2z-1=0\). Khoảng cách từ điểm \(A\left( 1;-2;1 \right)\) đến mặt phẳng \(\left( P \right)\) bằng
  • Phần ảo của số phức \(w=-1+i\) là
  • Cho biểu thức \(P=\sqrt[4]{{{x}^{5}}}\) với \(x>0\). Mệnh đề nào sau đây đúg?
  • Một trong bốn hàm số cho trong các phương án \(A,B,C,D\) sau đây có đồ thị như hình vẽ ​ Hỏi hàm số đó là hàm số nào?
  • Thể tích khối tứ diện đều có cạnh bằng 2
  • Cho \(d\) là đường thẳng đi qua điểm \(A\left( 1\,;2\,;3 \right)\) và vuông góc với mặt phẳng \(\left( \alpha \right):4x+3y-7z+1=0\). Phương trình chính tắc của \(d\) là
  • Cho hình chóp tam giác S.ABC có SA vuông góc với mặt phẳng \(\left( ABC \right),SA=\sqrt{3}.\) Tam giác ABC đều, cạnh a. Góc giữa SC và mặt phẳng \(\left( ABC \right)\) bằng:
  • Cho \(a,b,x\) là các số thực dương thỏa mãn \({{\log }_{5}}x=2{{\log }_{\sqrt{5}}}a+3{{\log }_{\frac{1}{5}}}b\). Mệnh đề nào là đúng?
  • Tìm các số thực a và b thỏa mãn 2a + (b + i)i = 1 + 2i với i là đv ảo.
  • Trong không gian \(Oxyz\), mặt cầu có tâm \(I\left( 2\,;-1\,;1 \right)\) và tiếp xúc mặt phẳng \(\left( Oyz \right)\) có phương trình là:
  • Cho hai số phức z1 = 1+i và z2 = 2-3i. Tính mô đun của sp z1 + z2
  • Nếu hình lập phương \(ABCD.{A}'{B}'{C}'{D}'\) có AB=2 thì thể tích của khối tứ diện \(A{B}'{C}'{D}'\) bằng
  • Cho hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {0;\,10} \right]\) và \(\int\limits_0^{10} {f\left( x \right){\rm{d}}x = 7} \) và \(\int\limits_2^6 {f\left( x \right){\rm{d}}x = 3} \). Tính \(P = \int\limits_0^2 {f\left( x \right){\rm{d}}x + \int\limits_6^{10} {f\left( x \right){\rm{d}}x} } \).
  • Trong hình dưới đây, điểm \(B\) là trung điểm của đoạn thẳng AC. Khẳng định nào sau đây là đúg?
  • Nguyên hàm của hs \(y=\frac{1}{1-x}\) là:
  • Cho hình thang ABCD vuông tại A và D, AD=CD=a, AB=2a. Quay hình thang ABCD quanh cạnh AB, thể tích khối tròn xoay thu được là :
  • Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng x=0 và x=3, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ \(x(0\le x\le 3)\) là một hình chữ nhật có hai kích thước là x và \(2\sqrt{9-{{x}^{2}}}.\)
  • Trong khôg gian Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}=25\) và mặt phẳng \(\left( P \right):x+2y+2z-12=0\).
  • Trong không gian \(Oxyz,\) cho mặt phẳng \((\alpha ):x+2y+3z-6=0\) và đường thẳng \(\Delta :\frac{x+1}{-1}=\frac{y+1}{-1}=\frac{z-3}{1}\). Mệnh đề nào sau đây đúng ?
  • Họ nguyên hàm của hàm số \(f(x)=\frac{x+3}{{{x}^{2}}+3\text{x}+2}\) là:
  • Cho không gian Oxyz, cho điểm \(A\left( 0;1;2 \right)\) và hai đường thẳng , \({{d}_{2}}:\frac{x}{2}=\frac{y-1}{1}=\frac{z+1}{-1}\). Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua A và song song với hai đường thẳng \({{d}_{1}},{{d}_{2}}\).
  • Tìm tập tất cả các giá trị của \(m\) để hàm số \(y={{x}^{3}}+\left( 3m-1 \right){{x}^{2}}+{{m}^{2}}x-3\) đạt cực tiểu tại\(x=-1.\)
  • Tìm số giá trị nguyên thuộc đoạn \(\left[ -2019\,;2019 \right]\) của tham số \(m\) để đồ thị hàm số \(y=\frac{\sqrt{x-3}}{{{x}^{2}}+x-m}\) có đúng hai đường tiệm cận.
  • Cho hình chóp tứ giác đều S.ABCD
  • Cho hàm số \(y=f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) thỏa mãn \(f'\left( x \right)-xf\left( x \right)=0,f\left( x \right)>0,\forall x\in \mathbb{R}\) và \(f\left( 0 \right)=1.\) Giá trị của \(f\left( 1 \right)\) bằng?
  • Một lớp có 36 chiếc ghế đơn được xếp thành hình vuông \(6\times 6.\) Giáo viên muốn xếp 36 học sinh của lớp, trong đó có em Kỷ và Hợi ngồi vào số ghế trên, mỗi học sinh ngồi một ghế. Xác suất để hai em Kỷ và Hợi ngồi cạnh nhau theo hàng dọc hoặc hàng ngang là
  • Tìm các giá trị của tham số m để hàm số \(y=\frac{1}{2}\ln \left( {{x}^{2}}+4 \right)-mx+3\) nghịch biến trên khoảng \(\left( -\infty ;+\infty \right)\).
  • Trong không gian Oxyz, cho điểm \(M\left( 1;1;1 \right)\). Mặt phẳng \(\left( P \right)\) đi qua M và cắt chiều dương của các trục Ox,Oy,Oz lần lượt tại các điểm \(A\left( a;0;0 \right),B\left( 0;b;0 \right),C\left( 0;0;c \right)\) thỏa mãn OA=2OB và thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Tính S=2a+b+3c.
  • Cho hình lăng trụ ABC.A'B'C
  • Cho hàm số \(f\left( x \right)={{x}^{3}}+a{{x}^{2}}+bx+c\) thỏa mãn c>2019, a+b+c-2018
  • Cho số phức z có \(\left| z \right|=2\) thì số phức \(\text{w}=z+3i\) có modun nhỏ nhất và lớn nhất lần lượt là:
  • Cho hàm số \(y=f(x)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) có đồ thị như hình dưới đây Có tất cả bao nhiêu giá trị nguyên của tham số \(m\in \left( -5;5 \right)\) để phương trình \({{f}^{2}}(x)-(m+4)\left| f(x) \right|+2m+4=0\) có 6 nghiệm phân biệt
  • Cho các số thực a,b,c thỏa mãn \({{a}^{2}}+{{b}^{2}}+{{c}^{2}}-2a-4b=4\). Tính P=a+2b+3c khi biểu thức \(\left| 2a+b-2c+7 \right|\) đạt giá trị lớn nhất.
  • Cho hai hàm số \(f\left( x \right)\) và \(g\left( x \right)\) có đạo hàm trên đoạn \(\left[ 1;\,4 \right]\) và thỏa mãn hệ thức . Tính \(I=\int\limits_{1}^{4}{\left[ f\left( x \right)+g\left( x \right) \right]\text{d}x}\).
  • Cho hai số thực \(x,y\) thay đổi thỏa mãn \(x+y+1=2\left( \sqrt{x-2}+\sqrt{y+3} \right)\).Giá trị lớn nhất của biểu thức \(S={{3}^{x+y-4}}+\left( x+y+1 \right){{2}^{7-x-y}}-3\left( {{x}^{2}}+{{y}^{2}} \right)\) là \(\frac{a}{b}\) với \(a,b\) là các số nguyên dương và \(\frac{a}{b}\) tối giản. Tính \(a+b\).
  • Tìm tất cả các giá trị thực của m để hàm số \(y = {2^{{x^3} – {x^2} + mx + 1}}\) đồng biến trên \(\left( {1;2} \right)\).
  • Cho hàm số \(y = \frac{{\ln x – 4}}{{\ln x – 2m}}\) với m là tham số. Gọi S là tập hợp các giá trị nguyên dương của m để hàm số đồng biến trên khoảng \(\left( {1;{\rm{e}}} \right)\). Tìm số phần tử của S.
  • Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hs \(y = \frac{{x – {m^2} – 2}}{{x – m}}\) trên đoạn
  • Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = x\left( {2017 + \sqrt {2019 – {x^2}} } \right)\) trên tập xác định của nó. Tính M – m.
ADSENSE TRACNGHIEM Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 12

Toán 12

Lý thuyết Toán 12

Giải bài tập SGK Toán 12

Giải BT sách nâng cao Toán 12

Trắc nghiệm Toán 12

Hình học 12 Chương 3

Ngữ văn 12

Lý thuyết Ngữ Văn 12

Soạn văn 12

Soạn văn 12 (ngắn gọn)

Văn mẫu 12

Soạn Ai đã đặt tên cho dòng sông

Tiếng Anh 12

Giải bài Tiếng Anh 12

Giải bài Tiếng Anh 12 (Mới)

Trắc nghiệm Tiếng Anh 12

Unit 8 Lớp 12 Life in the future

Tiếng Anh 12 mới Unit 4

Vật lý 12

Lý thuyết Vật Lý 12

Giải bài tập SGK Vật Lý 12

Giải BT sách nâng cao Vật Lý 12

Trắc nghiệm Vật Lý 12

Ôn tập Vật lý 12 Chương 3

Hoá học 12

Lý thuyết Hóa 12

Giải bài tập SGK Hóa 12

Giải BT sách nâng cao Hóa 12

Trắc nghiệm Hóa 12

Ôn tập Hóa học 12 Chương 4

Sinh học 12

Lý thuyết Sinh 12

Giải bài tập SGK Sinh 12

Giải BT sách nâng cao Sinh 12

Trắc nghiệm Sinh 12

Sinh Học 12 Chương 1 Tiến hóa

Lịch sử 12

Lý thuyết Lịch sử 12

Giải bài tập SGK Lịch sử 12

Trắc nghiệm Lịch sử 12

Lịch Sử 12 Chương 2 Lịch Sử VN

Địa lý 12

Lý thuyết Địa lý 12

Giải bài tập SGK Địa lý 12

Trắc nghiệm Địa lý 12

Địa Lý 12 VĐSD và BVTN

GDCD 12

Lý thuyết GDCD 12

Giải bài tập SGK GDCD 12

Trắc nghiệm GDCD 12

GDCD 12 Học kì 1

Công nghệ 12

Lý thuyết Công nghệ 12

Giải bài tập SGK Công nghệ 12

Trắc nghiệm Công nghệ 12

Công nghệ 12 Chương 3

Tin học 12

Lý thuyết Tin học 12

Giải bài tập SGK Tin học 12

Trắc nghiệm Tin học 12

Tin học 12 Chương 2

Cộng đồng

Hỏi đáp lớp 12

Tư liệu lớp 12

Xem nhiều nhất tuần

Video: Vợ nhặt của Kim Lân

Đề cương HK1 lớp 12

Video ôn thi THPT QG môn Văn

Video ôn thi THPT QG môn Sinh

Video ôn thi THPT QG môn Vật lý

Video ôn thi THPT QG Tiếng Anh

Video ôn thi THPT QG môn Hóa

Video ôn thi THPT QG môn Toán

Sóng- Xuân Quỳnh

Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX

Người lái đò sông Đà

Đất Nước- Nguyễn Khoa Điềm

Đàn ghi ta của Lor-ca

Tây Tiến

Ai đã đặt tên cho dòng sông

Quá trình văn học và phong cách văn học

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON tracnghiem.net QC Bỏ qua >>

Từ khóa » Hàm Số Ln X đồng Biến Trên Khoảng Nào