Cho Hệ Phương Trình X+my=m+1 Mx+y=3m-1tìm M để Hệ ...

Loga.vn
  • Khóa học
  • Trắc nghiệm
  • Bài viết
  • Hỏi đáp
  • Giải BT
  • Tài liệu
  • Games
  • Đăng nhập / Đăng ký
Loga.vn
  • Khóa học
  • Đề thi
  • Phòng thi trực tuyến
  • Đề tạo tự động
  • Bài viết
  • Câu hỏi
  • Hỏi đáp
  • Giải bài tập
  • Tài liệu
  • Games
  • Nạp thẻ
  • Đăng nhập / Đăng ký
user-avatar 01233049679 5 năm trước

cho hệ phương trình x+my=m+1 mx+y=3m-1

tìm m để hệ phương trình có một nghiệm duy nhất (x,y)thõa mãn xy đại giá trị nhỏ nhất

Loga Toán lớp 10 0 lượt thích 5235 xem 1 trả lời Thích Trả lời Chia sẻ user-avatar nhathuy2192000

Hệ pt : \(\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}\)

Xét pt đầu : \(x+my=m+1\Leftrightarrow x=m+1-my\) thay vào pt còn lại :

\(m\left(m+1-my\right)+y=3m-1\)

\(\Leftrightarrow y\left(1-m^2\right)=-m^2+2m-1\)

Nếu \(m=1\) thì pt có dạng 0.y = 0 => Vô số nghiệm.

Nếu m = -1 thì pt có dạng 0.x = -4 => vô nghiệm.

Xét với \(me1\) và \(me-1\) thì pt có nghiệm \(y=\frac{-\left(m-1\right)^2}{\left(1-m\right)\left(1+m\right)}=\frac{m-1}{m+1}\)

\(\Rightarrow x=m+1-m\left(\frac{m-1}{m+1}\right)=m+1-\frac{m^2-m}{m+1}=\frac{m^2+2m+1-m^2+m}{m+1}=\frac{3m+1}{m+1}\)

Xét \(xy=\frac{\left(m-1\right)\left(3m+1\right)}{\left(m+1\right)^2}=\frac{3m^2-2m-1}{\left(m+1\right)^2}\)

Đặt \(t=m+1\) thì \(m=t-1\) thay vào biểu thức trên được

\(\frac{3\left(t-1\right)^2-2\left(t-1\right)-1}{t^2}=\frac{3t^2-8t+4}{t^2}=\frac{4}{t^2}-\frac{8}{t}+3\)

Lại đặt \(a=\frac{1}{t}\) thì : \(4a^2-8a+3=4\left(a-1\right)^2-1\ge-1\)

Suy ra \(xy\ge-1\) . Dấu đẳng thức xảy ra khi \(a=1\Leftrightarrow t=1\Leftrightarrow m=0\)

Vậy với m = 0 thì xy đạt giá trị nhỏ nhất bằng -1

Vote (0) Phản hồi (0) 5 năm trước user-avatar Xem hướng dẫn giải user-avatar

Các câu hỏi liên quan

Trên mp Oxy cho A(1;3); B(2;4). 1)tìm toạ độ trọng tâm tam giác OAB

Bài 1. (2 điểm)

a) Thực hiện phép tính

b) Tìm các giá trị của m để hàm số y = (√m - 2)x + 3 đồng biến.

Bài 2. (2 điểm)

a) Giải phương trình: x4 - 24x2 - 25 = 0.

b) Giải hệ phương trình:{2x - y = 2
9x + 8y = 34

Bài 3. (2 điểm)

Cho phương trình ẩn x: x2 - 5x + m - 2 = 0 (1)

a) Giải phương trình (1) khi m = −4 .

b) Tìm m để phương trình (1) có hai nghiệm dương phân biệt x1; x2 thoả mãn hệ thức

Bài 4. (4 điểm)

Cho nửa đường tròn (O; R) đường kính BC. Lấy điểm A trên tia đối của tia CB. Kẻ tiếp tuyến AF của nửa đường tròn (O) (với F là tiếp điểm), tia AF cắt tiếp tuyến Bx của nửa đường tròn tại D. Biết AF = 4R/3.

a) Chứng minh tứ giác OBDF nội tiếp. Định tâm I đường tròn ngoại tiếp tứ giác OBDF.

b) Tính Cos góc DAB.

c) Kẻ OM ⊥ BC (M ∈ AD). Chứng minh BD/DM - DM/AM = 1.

d) Tính diện tích phần hình tứ giác OBDM ở bên ngoài nửa đường tròn (O) theo R.

Bài 1: (2điểm)

a) Thực hiện phép tính:

b) Hàm số y = (√m - 2)x + 3 đồng biến

m > 4

Cho 3 số dương x,y,z thỏa mãn x+y+z=1

CMR: \(\frac{3}{xy+z+zx}+\frac{2}{x^2+y^2+z^2}>14\)

1. Cho ft \(x^2-\left(m+3\right)x+2\left(m+2\right)=0\), m là số thực. Xác định m để ft có 2 nghiệm x1, x2là hai số có giá trị tuyệt đối trị tuyệt đối bằng nhau.

2. Chứng minh rằng \(\frac{\sin^2x-\cos^2x}{1+2\sin x.\cos x}=\frac{\tan x-1}{\tan x+1}\)

3. cho tam giác ABC có AB = 6, AC = 7, BC = 8, G là trọng tâm.

Gọi M,N là hai điểm xác định bởi \(\overrightarrow{AM}=\frac{2}{7}\overrightarrow{AC};\overrightarrow{BN}=-\frac{1}{2}\overrightarrow{BC}\).Tính độ dài MN.

xét tính đồng biến nghịch biến của hàm số

a)\(y=f\left(x\right)=\sqrt{x^2+2x+3}\)

b) \(y=f\left(x\right)=x-\sqrt{1-x}\) với x

Từ khóa » X+my=m+1 Và Mx+y=3m-1