Cho Hình Chóp S.ABCD Có đáy ABCD Là Hình Thang Vuông Tại ... - Olm

Học liệu Hỏi đáp Đăng nhập Đăng ký
  • Học bài
  • Hỏi bài
  • Kiểm tra
  • ĐGNL
  • Thi đấu
  • Bài viết Cuộc thi Tin tức Blog học tập
  • Trợ giúp
  • Về OLM

OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học

Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025

Chọn lớp Tất cả Mẫu giáo Lớp 1 Lớp 2 Lớp 3 Lớp 4 Lớp 5 Lớp 6 Lớp 7 Lớp 8 Lớp 9 Lớp 10 Lớp 11 Lớp 12 ĐH - CĐ Chọn môn Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Cập nhật Hủy Cập nhật Hủy
  • Mẫu giáo
  • Lớp 1
  • Lớp 2
  • Lớp 3
  • Lớp 4
  • Lớp 5
  • Lớp 6
  • Lớp 7
  • Lớp 8
  • Lớp 9
  • Lớp 10
  • Lớp 11
  • Lớp 12
  • ĐH - CĐ
K Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn lớp Tất cả Mẫu giáo Lớp 1 Lớp 2 Lớp 3 Lớp 4 Lớp 5 Lớp 6 Lớp 7 Lớp 8 Lớp 9 Lớp 10 Lớp 11 Lớp 12 ĐH - CĐ Chọn môn Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Tạo câu hỏi Hủy Xác nhận câu hỏi phù hợp
Chọn môn học Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên Mua vip
  • Tất cả
  • Mới nhất
  • Câu hỏi hay
  • Chưa trả lời
  • Câu hỏi vip
NP Nguyễn Phúc 19 tháng 3 2019 - olm

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB= BC= a AD=2 a ; SA vuông góc với mặt phẳng (ABCD) và SA =2a . Gọi M là một điểm trên cạnh AB; α là mặt phẳng đi qua M, vuông góc với AB. Đặt x= AM (0<x<a).

a.Tìm thiết diện của hình chóp S.ABCD với α . Thiết diện là hình gì?

b. Tính diện tích thiết diện theo a và x

#Toán lớp 11 0 Các câu hỏi dưới đây có thể giống với câu hỏi trên PT Pham Trong Bach 4 tháng 1 2019 Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB=BC=a ,AD=2a Cạnh SA=2a và SA vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của cạnh AB và ( α ) là mặt phẳng qua M và vuông góc với AB. Diện tích thiết diện của mặt phẳng ( α ) với hình chóp S.ABCD là ...Đọc tiếp

Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB=BC=a ,AD=2a Cạnh SA=2a và SA vuông góc với mặt phẳng (ABCD). Gọi M là trung điểm của cạnh AB và ( α ) là mặt phẳng qua M và vuông góc với AB. Diện tích thiết diện của mặt phẳng ( α ) với hình chóp S.ABCD là

#Toán lớp 11 1 CM Cao Minh Tâm 4 tháng 1 2019

Đúng(0) TH Trịnh Hồng Châu 28 tháng 1 2022 cho hình chóp SABCD có ABCD là hình thang vuông tại A và B với AB = BC = a , AD = 2a ; SA ⊥ ( ABCD ) và SA = 2a . Gọi M là 1 điểm nằm trên AB ; (α) là mặt phẳng qua M , vuông góc với AB . Đặt x=AM ( 0< x < α ) .a, Tìm thiết diện của hình chóp với (α) . Thiết diện là hình gì ?b, Tính diện tích thiết diện theo a và x dạ giúp mình bài này với ạ , mình cảm ơn...Đọc tiếp

cho hình chóp SABCD có ABCD là hình thang vuông tại A và B với AB = BC = a , AD = 2a ; SA ⊥ ( ABCD ) và SA = 2a . Gọi M là 1 điểm nằm trên AB ; (α) là mặt phẳng qua M , vuông góc với AB . Đặt x=AM ( 0< x < α ) .

a, Tìm thiết diện của hình chóp với (α) . Thiết diện là hình gì ?

b, Tính diện tích thiết diện theo a và x

dạ giúp mình bài này với ạ , mình cảm ơn ạ

#Toán lớp 11 1 DH Đức Huy 1 tháng 2 2022

Gọi N, Q lần lượt là trung điểm của AB , CD \(\Rightarrow\left\{{}\begin{matrix}MN\perp AB\\MQ\perp AB\end{matrix}\right.\)

Qua N kẻ đường thẳng song song với BC , cắt SC tại P

suy ra thiết diện của mặt phẳng (\(\alpha\) ) và hình chóp là MNPQ

Vì MQ là đường t/b của hình thang ABCD , \(\Rightarrow MQ=\dfrac{3a}{2}\)

MN là đường t/b của tam giác SAB; \(MN=\dfrac{SA}{2}=a\)

NP là đường t/b của tam giác SBC ; \(\Rightarrow NP=\dfrac{BC}{2}=\dfrac{a}{2}\)

Vậy diện tích hình thang MNPQ là : \(S_{MNPQ}=\dfrac{MN.\left(NP+MQ\right)}{2}=\dfrac{a}{2}.\left(\dfrac{a}{2}+\dfrac{3a}{2}\right)=a^2\)

Đúng(1) MN Minh Nguyệt 5 tháng 5 2021

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, SA vuông góc với mặt phẳng đáy và SA = a; AD=CD=A; AB=2A.Gọi (α) là mặt phẳng qua A và vuông góc SB. Tính diện tích thiết diện của hình chóp khi cắt bởi mp (α)

#Toán lớp 11 2 NV Nguyễn Việt Lâm Giáo viên 5 tháng 5 2021

Gặp những bài cần tính toán thế này làm biếng lắm, dựng hình thì dễ chứ tính thì chả muốn tính chút xíu nào.

Trong mp đáy, kéo dài AD và BC cắt nhau tại E \(\Rightarrow D\) là trung điểm AE (đường trung bình) \(\Rightarrow AE=AB=2a\)

Ta có: \(\left\{{}\begin{matrix}AD\perp AB\\SA\perp\left(ABCD\right)\Rightarrow SA\perp AD\end{matrix}\right.\) \(\Rightarrow AD\perp\left(SAB\right)\Rightarrow AD\perp SB\)

\(\Rightarrow AD\in\left(\alpha\right)\)

Trong mp (SAB), kẻ \(AM\perp SB\Rightarrow M\in\left(\alpha\right)\)

Dễ dàng chứng minh tam giác ACB vuông cân tại C (Pitago đảo) \(\Rightarrow BC\perp\left(SAC\right)\)

Trong mp (SAC), kẻ \(AN\perp SC\Rightarrow AN\perp\left(SBC\right)\Rightarrow AN\perp SB\Rightarrow N\in\left(\alpha\right)\)

\(\Rightarrow\) Thiết diện là tứ giác AMND

\(SB=SE=\sqrt{SA^2+AB^2}=a\sqrt{5}\) ; \(AM=\dfrac{SA.AB}{\sqrt{SA^2+AB^2}}=\dfrac{2a\sqrt{5}}{5}\)

\(AC=a\sqrt{2}\Rightarrow SC=\sqrt{AC^2+SA^2}=a\sqrt{3}\)

\(CN=\dfrac{AC^2}{SC}=\dfrac{2a\sqrt{3}}{3}\) ; \(EC=BC=a\sqrt{2}\Rightarrow EN=\sqrt{EC^2+CN^2}=\dfrac{a\sqrt{30}}{3}\)

\(DE=AD=a\)

\(S_{AME}=\dfrac{1}{2}AM.AE=...\)

\(S_{DNE}=\dfrac{1}{2}DE.EN.sin\widehat{DEN}=\dfrac{1}{2}DE.EN.\dfrac{AM}{\sqrt{AM^2+AE^2}}=...\)

\(\Rightarrow S_{AMND}=S_{AME}-S_{DNE}=...\)

Đúng(0) MN Minh Nguyệt 5 tháng 5 2021

bạn giúp mình trường hợp vuông với SC luôn vs

Đúng(0) Xem thêm câu trả lời PT Pham Trong Bach 21 tháng 7 2019 Hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và D, có AB = 2a, AD = DC = a, có cạnh SA vuông góc với mặt phẳng (ABCD) và SA = a.a) Chứng minh mặt phẳng (SAD) vuông góc với mặt phẳng (SDC), mặt phẳng (SAC) vuông góc với mặt phẳng (SCB).b) Gọi φ là góc giữa hai mặt phẳng (SBC) và (ABCD), tính tanφ.c) Gọi (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC). Hãy xác định (α) và xác...Đọc tiếp

Hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và D, có AB = 2a, AD = DC = a, có cạnh SA vuông góc với mặt phẳng (ABCD) và SA = a.

a) Chứng minh mặt phẳng (SAD) vuông góc với mặt phẳng (SDC), mặt phẳng (SAC) vuông góc với mặt phẳng (SCB).

b) Gọi φ là góc giữa hai mặt phẳng (SBC) và (ABCD), tính tanφ.

c) Gọi (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC). Hãy xác định (α) và xác định thiết diện của hình chóp S.ABCD với (α)

#Toán lớp 11 1 CM Cao Minh Tâm 21 tháng 7 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SCD) ⊥ (SAD)

Gọi I là trung điểm của đoạn AB. Ta có AICD là hình vuông và IBCD là hình bình hành. Vì DI // CB và DI ⊥ CA nên AC ⊥ CB. Do đó CB ⊥ (SAC).

Vậy (SBC) ⊥ (SAC).

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC) chính là mặt phẳng (SDI). Do đó thiết diện của (α) với hình chóp S.ABCD là tam giác đều SDI có chiều dài mỗi cạnh bằng a√2. Gọi H là tâm hình vuông AICD ta có SH ⊥ DI và Giải sách bài tập Toán 11 | Giải sbt Toán 11 .

Tam giác SDI có diện tích:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Đúng(0) BC Big City Boy 13 tháng 10 2023

Cho hình chóp S.ABCD có ABCD là hình thoi cạnh a, SAB là tam giác vuông tại A với SA =a. Gọi M là một điểm thay đổi trên cạnh AD, đặt AM=x(0<x<a) .Mp (a) qua M và song song CD và SA

a)Dựng thiết diện của hình chóp với mặt phẳng (a), thiết diện là hình gì? b)Tính diện tích thiết diện theo a và x

#Toán lớp 11 0 PT Pham Trong Bach 1 tháng 2 2019 Hình chóp S.ABCD có đáy là hình vuông ABCD tâm O và có cạnh SA vuông góc với mặt phẳng (ABCD). Giả sử (α) là mặt phẳng đi qua A và vuông góc với cạnh SC, (α) cắt SC tại I.a) Xác định giao điểm K của SO với mặt phẳng (α).b) Chứng minh mặt phẳng (SBD) vuông góc với mặt phẳng (SAC) và BD // (α).c) Xác định giao tuyến d của mặt phẳng (SBD) và mặt phẳng (α). Tìm thiết diện cắt hình chóp S.ABCD...Đọc tiếp

Hình chóp S.ABCD có đáy là hình vuông ABCD tâm O và có cạnh SA vuông góc với mặt phẳng (ABCD). Giả sử (α) là mặt phẳng đi qua A và vuông góc với cạnh SC, (α) cắt SC tại I.

a) Xác định giao điểm K của SO với mặt phẳng (α).

b) Chứng minh mặt phẳng (SBD) vuông góc với mặt phẳng (SAC) và BD // (α).

c) Xác định giao tuyến d của mặt phẳng (SBD) và mặt phẳng (α). Tìm thiết diện cắt hình chóp S.ABCD bởi mặt phẳng (α).

#Toán lớp 11 1 CM Cao Minh Tâm 1 tháng 2 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi I là giao điểm của mặt phẳng (α) với cạnh SC. Ta có: (α) ⊥ SC, AI ⊂ (α) ⇒ SC ⊥ AI. Vậy AI là đường cao của tam giác vuông SAC. Trong mặt phẳng (SAC), đường cao AI cắt SO tại K và AI ⊂ (α), nên K là giao điểm của SO với (α).

b) Ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ BD ⊥ SC

Mặt khác BD ⊂ (SBD) nên (SBD) ⊥ (SAC).

Vì BD ⊥ SC và (α) ⊥ SC nhưng BD không chứa trong (α) nên BD // (α)

Ta có K = SO ∩ (α) và SO thuộc mặt phẳng (SBD) nên K là một điểm chung của (α) và (SBD).

Mặt phẳng (SBD) chứa BD // (α) nên cắt theo giao tuyến d // BD. Giao tuyến này đi qua K là điểm chung của (α) và (SBD).

Gọi M và N lần lượt là giao điểm của d với SB và SD. Ta được thiết diện là tứ giác AIMN vuông góc với SC và đường chéo MN song song với BD.

Đúng(0) PT Pham Trong Bach 13 tháng 3 2018 Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Cạnh bên SA vuông góc với đáy,SA= 2 a 3 Gọi I là trung điểm của mặt phẳng (P) đi qua I và vuông góc với SD. Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng (P). ...Đọc tiếp

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Cạnh bên SA vuông góc với đáy,SA= 2 a 3 Gọi I là trung điểm của mặt phẳng (P)đi qua I và vuông góc với SD. Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng (P).

#Toán lớp 11 1 CM Cao Minh Tâm 13 tháng 3 2018

Đúng(0) PT Pham Trong Bach 25 tháng 4 2019 Cho hình chóp S.ABCD, có đáy là hình vuông cạnh a và tam giác ABC đều. Một điểm M thuộc cạnh BC sao cho BM= x ( 0< x< a), mặt phẳng (α) đi qua M song song với SA và SB. Biết rằng mp (α) cắt hình chóp theo 1 tứ giác. Tính diện tích thiết diện theo a và x A. 3 4 a 2 - x 2 B. 3 2 a 2 - x 2 C. 2 4 ...Đọc tiếp

Cho hình chóp S.ABCD, có đáy là hình vuông cạnh a và tam giác ABC đều. Một điểm M thuộc cạnh BC sao cho BM= x ( 0< x< a), mặt phẳng (α) đi qua M song song với SA và SB. Biết rằng mp (α) cắt hình chóp theo 1 tứ giác. Tính diện tích thiết diệntheo a và x

A. 3 4 a 2 - x 2

B. 3 2 a 2 - x 2

C. 2 4 a 2 - x 2

D. 1 4 a 2 - x 2

#Toán lớp 11 1 CM Cao Minh Tâm 25 tháng 4 2019

Đúng(0) TM Trần Mai Hân 22 tháng 4 2020 - olm

Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật tâm O có AB = a, góc ACB = 30o, I là trung điểm của đoạn OA, SI vuông góc (ABCD), SI = 2a. Gọi (P) là mặt phẳng qua O và vuông góc với AC. Tìm thiết diện của (P) với hình chóp S.ABCD và tính diện tích thiết diện này theo a.

#Toán lớp 11 0 Xếp hạng Tất cả Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Âm nhạc Mỹ thuật Tiếng anh thí điểm Lịch sử và Địa lý Thể dục Khoa học Tự nhiên và xã hội Đạo đức Thủ công Quốc phòng an ninh Tiếng việt Khoa học tự nhiên
  • Tuần
  • Tháng
  • Năm
  • LD LÃ ĐỨC THÀNH 12 GP
  • SV Sinh Viên NEU 10 GP
  • NV Nguyễn Việt Lâm 6 GP
  • KV Kiều Vũ Linh 6 GP
  • NL Nguyễn Lê Phước Thịnh 2 GP
  • S subjects 2 GP
  • DS Đinh Sơn Tùng VIP 2 GP
  • R Raven 2 GP
  • TT Trịnh Thanh Vân 2 GP
  • TA Trần Anh Quân VIP 2 GP
Học liệu Hỏi đáp Link rút gọn Link rút gọn Học toán với OLM Để sau Đăng ký
Các khóa học có thể bạn quan tâm
Mua khóa học Tổng thanh toán: 0đ (Tiết kiệm: 0đ) Tới giỏ hàng Đóng
Yêu cầu VIP

Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.

Từ khóa » Hình Chóp S Abcd đáy Hình Thang Vuông Tại A Và B