Cho Số Phức Z Thỏa Mãn: \((3 - 4(1 - I) = (2 + I)z\). Mô đun Của Z Là:
Có thể bạn quan tâm
- Câu hỏi:
Cho số phức z thỏa mãn: \((3 - 2i)\overline z - 4(1 - i) = (2 + i)z\). Mô đun của z là:
- A. \(\sqrt {10} \)
- B. \(\frac{{\sqrt 3 }}{4}\)
- C. \(\sqrt {5} \)
- D. \(\sqrt {3} \)
Lời giải tham khảo:
Đáp án đúng: A
Gọi \(z=x+yi, x,\,y \in R\).
Ta có: \((3 - 2i)\overline z - 4(1 - i) = (2 + i)z \Leftrightarrow (3 - 2i)(2 - i)\overline z - 4(1 - i)(2 - i) = 5z\)
\( \Leftrightarrow (4 - 7i)(x - yi) - 5(x + yi) = 4 - 12i \Leftrightarrow ( - x - 7y) - (7x + 9y)i = 4 - 12i\).
Ta có hệ \(\left\{ \begin{array}{l} x + 7y = - 4\\ 7x + 9y = 12 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 3\\ y = - 1 \end{array} \right.\)
Vậy \(z=3-i\) nên \(\left| z \right| = \sqrt {{3^2} + {{( - 1)}^2}} = \sqrt {10} \)
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 67953
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
40 câu trắc nghiệm chuyên đề Số phức có lời giải ôn thi THPT QG năm 2019
40 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Trong mặt phẳng với hệ toạ độ Oxy, cho các điểm A(4;0), B(1;4) và C(1;-1).
- Cho số phức \(z = a + bi\,\,\left( {a,b \in R} \right)\) thỏa mãn \(\left( {1 + i} \right)z + 2\overline z = 3 + 2i.
- Cho số phức \(z = \frac{{ - 1}}{2} + \frac{{\sqrt 3 }}{2}i\). Số phức \(1 + z + {z^2}\) bằng
- Xét số phức z thỏa mãn \(\left( {1 + 2i} \right)\left| z \right| = \frac{{\sqrt {10} }}{z} - 2 + i tìm mênh đề đúng
- Gọi \(z_1, z_2\) là 2 nghiệm của phương trình \({z^2} + z + 1 = 0\). Tính giá trị \(P = {z_1}^{2017} + {z_2}^{2017}\)
- Cho \(\left( { - 1 + 4i} \right)x + {\left( {1 + 2i} \right)^3}y = 2 + 9i\). Khi đó \(x\) bằng
- Cho số phức \(z = a + bi\,\,\left( {a,\,\,b \in R} \right)\) thỏa mãn \(\left( {2 - i} \right)\overline z - 3z = - 1 + 3i\).
- Gọi \({z_1},\,\,{z_2},\,\,{z_3},\,\,{z_4}\) là 4 nghiệm phức của phương trình \({z^4} - 2{z^2} - 8 = 0\), tính giá trị của P=OA+OB+OC+OD với O là gốc tọa độ
- Cho số phức z thỏa mãn điều kiện \(z + \left( {2 + i} \right)\bar z = 3 + 5i\). Phần thực của số phức z là
- Gọi \(z_1, z_2\) là hai nghiệm phức của phương trình: \({z^2} - z + 2 = 0\).
- Điểm M trong hình vẽ là điểm biểu diễn của số phức z.Tìm phần thực và phần ảo của số phức z.
- Cho số phức z thỏa mãn \(\left( {1--3i} \right)z\) là số thực và \(\left| {\bar z - 2 + 5i} \right| = 1\). Khi đó z là
- Tìm số phức liên hợp của số phức \(z = i\left( {3i + 1} \right)\).
- Cho số phức z thoả: \(z(1 + 2i) = 4 - 3i\). Tìm số phức liên hợp \(\bar z\) của z
- Với cặp số thực (x;y) nào dưới đây thì \({z_1} = 9{y^2} - 4 - 10x{i^5}\) và \({z_2} = 8{y^2} + 20{i^{11}}\) là hai s�
- Cho z là số phức thỏa mãn \(z + \frac{1}{z} = 1.\) Tính giá trị của \({z^{2017}} + \frac{1}{{{z^{2017}}}}.\)
- Tính môđun của số phức z thỏa mãn \(z\left( {2 - i} \right) + 13i = 1\).
- Cho số phức \(z = 2 - 3i\). Tìm môđun của số phức \(w = \left( {1 + i} \right)z - \overline z \).
- Cho số phức z thỏa mãn \(\left( {2 + 3i} \right)z - \left( {1 + 2i} \right)\overline z = 7 - i\). Tìm môđun của z.
- Cho số phức z thỏa mãn: \((3 - 2i)\overline z - 4(1 - i) = (2 + i)z\). Mô đun của z là:
- Cho số phức z thỏa mãn: \(\left| {z - 2 - 2i} \right| = 1\). Số phức \(z-i\) có môđun nhỏ nhất là:
- Cho hai số phức \({z_1} = 1 - i\) và \({z_2} = 2 + 3i\). Tính môđun của số phức \({z_2} - i{z_1}\).
- Cho số phức z thỏa mãn \(2z = i\left( {\overline z + 3} \right)\). Môđun của z là
- Cho số phức z thỏa mãn \(3iz + 3 + 4i = 4z\). Tính môđun của số phức \(3z+4\)
- Cho số phức z thỏa mãn \(\left| z \right| \le 1\). Đặt \(A = \frac{{2z - i}}{{2 + iz}}\). Mệnh đề nào sau đây đúng?
- Trong số các số phức z thỏa mãn điều kiện \(\left| {z - 4 + 3i} \right| = 3,\) gọi \(z_0\) là số phức có mô đu
- Cho số phức \(z=a+bi\) với \(a, b\) là hai số thực khác 0.
- Gọi \(z_1, z_2\) là các nghiệm phức của phương trình \({z^2} + 2z + 5 = 0\).
- Kí hiệu \(z_0\) là nghiệm phức có phần ảo dương của phương trình \(4{z^2} - 16z + 17 = 0\).
- Cho hai số phức \(z_1, z_2\) thỏa mãn \({z_1},{z_2} \ne 0; {z_1} + {z_2} \ne 0\) và \(\frac{1}{{{z_1} + {z_2}}} = \frac{1}{{{z_1}}}
- Trong mặt phẳng phức gọi M là điểm biểu diễn cho số phức \(z=a+bi \left( {a,b \in R,\,\,ab \ne 0} \right)\), M là
- Điểm biểu diễn của số phức \(z = \frac{1}{{2 - 3i}}\) trên mặt phẳng tọa độ Oxy là điểm nào?
- Trên mặt phẳng phức, cho điểm A biểu diễn số phức \(3-2i\), điểm B biểu diễn số phức \(-1+6i\) điểm M biểu diễn số phức nào ?
- Cho số phức z thỏa mãn \(\left| z \right| = \frac{{\sqrt 2 }}{2}\) và điểm A trong hình vẽ bên là điểm bi
- Cho số phức z thỏa mãn \({\left( {1 + z} \right)^2}\) là số thực.
- Với các số phức z thỏa mãn \(|z - 2 + i| = 4\), tập hợp các điểm biểu diễn các số phức z là một đường tròn.
- Trong mặt phẳng Oxy, tập hợp điểm biểu diễn số phức z thỏa mãn \(\left| {z - 1} \right| = \left| {\left( {1 + i} \right)z}
- Tập hợp những điểm biểu diễn của số phức \(\omega \) thỏa mãn \(\omega = \left( {1 - 2i} \right)z + 3\) và $\left| {
- Với 2 số phức \(z_1\) và \(z_2\) thỏa mãn \({z_1} + {z_2} = 8 + 6i\) và \(\left| {{z_1} - {z_2}} \right| = 2\) tìm giá trị lớn nhất của P=|z_1|+|z_2|
- Cho các số phức z, w thỏa mãn \(\left| {z + 2 - 2i} \right| = \left| {z - 4i} \right|,w = iz + 1\).
Bộ đề thi nổi bật
UREKA AANETWORK
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Hình học 12 Chương 3
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn Ai đã đặt tên cho dòng sông
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 9 Lớp 12 Deserts
Tiếng Anh 12 mới Unit 5
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Ôn tập Vật lý 12 Chương 3
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Hoá Học 12 Chương 5
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Ôn tập Sinh 12 Chương 1 - Tiến hóa
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 3 Lịch Sử VN
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Đề cương HK1 lớp 12
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Hóa
Video ôn thi THPT QG môn Toán
Video ôn thi THPT QG môn Sinh
Video ôn thi THPT QG môn Văn
Đất Nước- Nguyễn Khoa Điềm
Đàn ghi ta của Lor-ca
Ai đã đặt tên cho dòng sông
Tây Tiến
Quá trình văn học và phong cách văn học
Người lái đò sông Đà
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON
QC Bỏ qua >>
Từ khóa » Cho Số Phức Z Thỏa Mãn (3+2i)z+(2-i)^2=4+i
-
Cho Số Phức Z Thỏa Mãn: (3+2i)z + (2-i)^2 = 4 + I . Hiệu Phần Thực Và ...
-
Cho Số Phức Z Thỏa Mãn điều Kiện (3+2i)z+(2-i)^2=4+i. Tìm Phần
-
Cho Số Phức Z Thỏa Mãn Phương Trình (3+2i)z+(z−i)2=4+i - Khóa Học
-
Cho Số Phức Z Thỏa Mãn:\( (3 + 2i)z + (2 - Trắc Nghiệm Online
-
I)^2} = 4 + I$ . Tìm Tọa độ điểm $M$ Biểu Diễn Số Phức $z
-
Cho Số Phức $z$ Thỏa Mãn $\left( {3 + 2i} \right)z + {\left( {2
-
[LỜI GIẢI] Cho Số Phức Z Thỏa Mãn điều Kiện ( 3 + 2i )z + ( 2 - I )^2
-
( 3+2i )z+( 2-i )^2=4+i. Phần ảo Của Số Phức Textw=( 1+z )linez Là
-
Cho Số Phức Z Thỏa Mãn điều Kiện (3+2i)z+(2-i)^2=4+i. Tìm Phần...
-
Cho Số Phức Z Thỏa Mãn điều Kiện (3 + 2i)z + (2
-
Tìm Các Số Thực (x,y ) Thỏa Mãn (( (3 - 2i) )( (x - Yi) ) - 4( (1