Cho Số Phức Z Thỏa Mãn: \((3 - 4(1 - I) = (2 + I)z\). Mô đun Của Z Là:

YOMEDIA NONE Cho số phức z thỏa mãn: \((3 - 2i)\overline z  - 4(1 - i) = (2 + i)z\). Mô đun của z là: ADMICRO
  • Câu hỏi:

    Cho số phức z thỏa mãn: \((3 - 2i)\overline z - 4(1 - i) = (2 + i)z\). Mô đun của z là:

    • A. \(\sqrt {10} \)
    • B. \(\frac{{\sqrt 3 }}{4}\)
    • C. \(\sqrt {5} \)
    • D. \(\sqrt {3} \)

    Lời giải tham khảo:

    Đáp án đúng: A

    Gọi \(z=x+yi, x,\,y \in R\).

    Ta có: \((3 - 2i)\overline z - 4(1 - i) = (2 + i)z \Leftrightarrow (3 - 2i)(2 - i)\overline z - 4(1 - i)(2 - i) = 5z\)

    \( \Leftrightarrow (4 - 7i)(x - yi) - 5(x + yi) = 4 - 12i \Leftrightarrow ( - x - 7y) - (7x + 9y)i = 4 - 12i\).

    Ta có hệ \(\left\{ \begin{array}{l} x + 7y = - 4\\ 7x + 9y = 12 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 3\\ y = - 1 \end{array} \right.\)

    Vậy \(z=3-i\) nên \(\left| z \right| = \sqrt {{3^2} + {{( - 1)}^2}} = \sqrt {10} \)

    Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
    ATNETWORK

Mã câu hỏi: 67953

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

  • 40 câu trắc nghiệm chuyên đề Số phức có lời giải ôn thi THPT QG năm 2019

    40 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

CÂU HỎI KHÁC

  • Trong mặt phẳng với hệ toạ độ Oxy, cho các điểm A(4;0), B(1;4) và C(1;-1).
  • Cho số phức \(z = a + bi\,\,\left( {a,b \in R} \right)\) thỏa mãn \(\left( {1 + i} \right)z + 2\overline z  = 3 + 2i.
  • Cho số phức \(z = \frac{{ - 1}}{2} + \frac{{\sqrt 3 }}{2}i\). Số phức \(1 + z + {z^2}\) bằng
  • Xét số phức z thỏa mãn \(\left( {1 + 2i} \right)\left| z \right| = \frac{{\sqrt {10} }}{z} - 2 + i tìm mênh đề đúng
  • Gọi \(z_1, z_2\) là 2 nghiệm của phương trình \({z^2} + z + 1 = 0\). Tính giá trị \(P = {z_1}^{2017} + {z_2}^{2017}\) 
  • Cho \(\left( { - 1 + 4i} \right)x + {\left( {1 + 2i} \right)^3}y = 2 + 9i\). Khi đó \(x\) bằng
  • Cho số phức \(z = a + bi\,\,\left( {a,\,\,b \in R} \right)\) thỏa mãn \(\left( {2 - i} \right)\overline z  - 3z =  - 1 + 3i\).
  • Gọi \({z_1},\,\,{z_2},\,\,{z_3},\,\,{z_4}\) là 4 nghiệm phức của phương trình \({z^4} - 2{z^2} - 8 = 0\), tính giá trị của P=OA+OB+OC+OD với O là gốc tọa độ
  • Cho số phức z thỏa mãn điều kiện \(z + \left( {2 + i} \right)\bar z = 3 + 5i\). Phần thực của số phức z là
  • Gọi \(z_1, z_2\) là hai nghiệm phức của phương trình: \({z^2} - z + 2 = 0\).
  • Điểm M trong hình vẽ là điểm biểu diễn của số phức z.Tìm phần thực và phần ảo của số phức z.
  • Cho số phức z thỏa mãn \(\left( {1--3i} \right)z\) là số thực và \(\left| {\bar z - 2 + 5i} \right| = 1\). Khi đó z là
  • Tìm số phức liên hợp của số phức \(z = i\left( {3i + 1} \right)\).
  • Cho số phức z thoả: \(z(1 + 2i) = 4 - 3i\). Tìm số phức liên hợp \(\bar z\) của z
  • Với cặp số thực (x;y) nào dưới đây thì \({z_1} = 9{y^2} - 4 - 10x{i^5}\) và \({z_2} = 8{y^2} + 20{i^{11}}\) là hai s�
  • Cho z là số phức thỏa mãn \(z + \frac{1}{z} = 1.\) Tính giá trị của \({z^{2017}} + \frac{1}{{{z^{2017}}}}.\)
  • Tính môđun của số phức z thỏa mãn \(z\left( {2 - i} \right) + 13i = 1\).
  • Cho số phức \(z = 2 - 3i\). Tìm môđun của số phức \(w = \left( {1 + i} \right)z - \overline z \).
  • Cho số phức z thỏa mãn \(\left( {2 + 3i} \right)z - \left( {1 + 2i} \right)\overline z  = 7 - i\). Tìm môđun của z.
  • Cho số phức z thỏa mãn: \((3 - 2i)\overline z  - 4(1 - i) = (2 + i)z\). Mô đun của z là:
  • Cho số phức z thỏa mãn: \(\left| {z - 2 - 2i} \right| = 1\). Số phức \(z-i\) có môđun nhỏ nhất là:
  • Cho hai số phức \({z_1} = 1 - i\) và \({z_2} = 2 + 3i\). Tính môđun của số phức \({z_2} - i{z_1}\).
  • Cho số phức z thỏa mãn \(2z = i\left( {\overline z  + 3} \right)\). Môđun của z là
  • Cho số phức z thỏa mãn \(3iz + 3 + 4i = 4z\). Tính môđun của số phức \(3z+4\) 
  • Cho số phức z thỏa mãn \(\left| z \right| \le 1\). Đặt \(A = \frac{{2z - i}}{{2 + iz}}\). Mệnh đề nào sau đây đúng?
  • Trong số các số phức z thỏa mãn điều kiện \(\left| {z - 4 + 3i} \right| = 3,\) gọi \(z_0\) là số phức có mô đu
  • Cho số phức \(z=a+bi\) với \(a, b\) là hai số thực khác 0.
  • Gọi \(z_1, z_2\) là các nghiệm phức của phương trình \({z^2} + 2z + 5 = 0\).
  • Kí hiệu \(z_0\) là nghiệm phức có phần ảo dương của phương trình \(4{z^2} - 16z + 17 = 0\).
  • Cho hai số phức \(z_1, z_2\) thỏa mãn \({z_1},{z_2} \ne 0; {z_1} + {z_2} \ne 0\) và \(\frac{1}{{{z_1} + {z_2}}} = \frac{1}{{{z_1}}}
  • Trong mặt phẳng phức gọi M là điểm biểu diễn cho số phức \(z=a+bi \left( {a,b \in R,\,\,ab \ne 0} \right)\), M là
  • Điểm biểu diễn của số phức \(z = \frac{1}{{2 - 3i}}\) trên mặt phẳng tọa độ Oxy là điểm nào?
  • Trên mặt phẳng phức, cho điểm A biểu diễn số phức \(3-2i\), điểm B biểu diễn số phức \(-1+6i\) điểm M biểu diễn số phức nào ?
  • Cho số phức z thỏa mãn \(\left| z \right| = \frac{{\sqrt 2 }}{2}\) và điểm A trong hình vẽ bên là điểm bi
  • Cho số phức z thỏa mãn \({\left( {1 + z} \right)^2}\) là số thực.
  • Với các số phức z thỏa mãn \(|z - 2 + i| = 4\), tập hợp các điểm biểu diễn các số phức z là một đường tròn.
  • Trong mặt phẳng Oxy, tập hợp điểm biểu diễn số phức z thỏa mãn \(\left| {z - 1} \right| = \left| {\left( {1 + i} \right)z}
  • Tập hợp những điểm biểu diễn của số phức \(\omega \) thỏa mãn \(\omega  = \left( {1 - 2i} \right)z + 3\) và $\left| {
  • Với 2 số phức \(z_1\) và \(z_2\) thỏa mãn \({z_1} + {z_2} = 8 + 6i\) và \(\left| {{z_1} - {z_2}} \right| = 2\) tìm giá trị lớn nhất của P=|z_1|+|z_2|
  • Cho các số phức z, w thỏa mãn \(\left| {z + 2 - 2i} \right| = \left| {z - 4i} \right|,w = iz + 1\).
ADSENSE TRACNGHIEM Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 12

Toán 12

Lý thuyết Toán 12

Giải bài tập SGK Toán 12

Giải BT sách nâng cao Toán 12

Trắc nghiệm Toán 12

Hình học 12 Chương 3

Ngữ văn 12

Lý thuyết Ngữ Văn 12

Soạn văn 12

Soạn văn 12 (ngắn gọn)

Văn mẫu 12

Soạn Ai đã đặt tên cho dòng sông

Tiếng Anh 12

Giải bài Tiếng Anh 12

Giải bài Tiếng Anh 12 (Mới)

Trắc nghiệm Tiếng Anh 12

Unit 9 Lớp 12 Deserts

Tiếng Anh 12 mới Unit 5

Vật lý 12

Lý thuyết Vật Lý 12

Giải bài tập SGK Vật Lý 12

Giải BT sách nâng cao Vật Lý 12

Trắc nghiệm Vật Lý 12

Ôn tập Vật lý 12 Chương 3

Hoá học 12

Lý thuyết Hóa 12

Giải bài tập SGK Hóa 12

Giải BT sách nâng cao Hóa 12

Trắc nghiệm Hóa 12

Hoá Học 12 Chương 5

Sinh học 12

Lý thuyết Sinh 12

Giải bài tập SGK Sinh 12

Giải BT sách nâng cao Sinh 12

Trắc nghiệm Sinh 12

Ôn tập Sinh 12 Chương 1 - Tiến hóa

Lịch sử 12

Lý thuyết Lịch sử 12

Giải bài tập SGK Lịch sử 12

Trắc nghiệm Lịch sử 12

Lịch Sử 12 Chương 3 Lịch Sử VN

Địa lý 12

Lý thuyết Địa lý 12

Giải bài tập SGK Địa lý 12

Trắc nghiệm Địa lý 12

Địa Lý 12 VĐSD và BVTN

GDCD 12

Lý thuyết GDCD 12

Giải bài tập SGK GDCD 12

Trắc nghiệm GDCD 12

GDCD 12 Học kì 1

Công nghệ 12

Lý thuyết Công nghệ 12

Giải bài tập SGK Công nghệ 12

Trắc nghiệm Công nghệ 12

Công nghệ 12 Chương 3

Tin học 12

Lý thuyết Tin học 12

Giải bài tập SGK Tin học 12

Trắc nghiệm Tin học 12

Tin học 12 Chương 2

Cộng đồng

Hỏi đáp lớp 12

Tư liệu lớp 12

Xem nhiều nhất tuần

Video: Vợ nhặt của Kim Lân

Đề cương HK1 lớp 12

Video ôn thi THPT QG môn Vật lý

Video ôn thi THPT QG Tiếng Anh

Video ôn thi THPT QG môn Hóa

Video ôn thi THPT QG môn Toán

Video ôn thi THPT QG môn Sinh

Video ôn thi THPT QG môn Văn

Đất Nước- Nguyễn Khoa Điềm

Đàn ghi ta của Lor-ca

Ai đã đặt tên cho dòng sông

Tây Tiến

Quá trình văn học và phong cách văn học

Người lái đò sông Đà

Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON tracnghiem.net QC Bỏ qua >>

Từ khóa » Cho Số Phức Z Thỏa Mãn (3+2i)z+(2-i)^2=4+i