Cho Số Thực A,b,c Sao Cho Pt \(z^3 Az^2 Bz C=0\) Nhận \(z=1 I ... - Hoc24

HOC24

Lớp học Học bài Hỏi bài Giải bài tập Đề thi ĐGNL Tin tức Cuộc thi vui Khen thưởng
  • Tìm kiếm câu trả lời Tìm kiếm câu trả lời cho câu hỏi của bạn
Đóng Đăng nhập Đăng ký

Lớp học

  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Lớp 2
  • Lớp 1

Môn học

  • Toán
  • Vật lý
  • Hóa học
  • Sinh học
  • Ngữ văn
  • Tiếng anh
  • Lịch sử
  • Địa lý
  • Tin học
  • Công nghệ
  • Giáo dục công dân
  • Tiếng anh thí điểm
  • Đạo đức
  • Tự nhiên và xã hội
  • Khoa học
  • Lịch sử và Địa lý
  • Tiếng việt
  • Khoa học tự nhiên
  • Hoạt động trải nghiệm
  • Hoạt động trải nghiệm, hướng nghiệp
  • Giáo dục kinh tế và pháp luật

Chủ đề / Chương

Bài học

HOC24

Khách Khách vãng lai Đăng nhập Đăng ký Khám phá Hỏi đáp Đề thi Tin tức Cuộc thi vui Khen thưởng
  • Tất cả
  • Toán
  • Vật lý
  • Hóa học
  • Sinh học
  • Ngữ văn
  • Tiếng anh
  • Lịch sử
  • Địa lý
  • Tin học
  • Công nghệ
  • Giáo dục công dân
  • Tiếng anh thí điểm
  • Hoạt động trải nghiệm, hướng nghiệp
  • Giáo dục kinh tế và pháp luật
Hãy tham gia nhóm Học sinh Hoc24OLM Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Câu hỏi

Hủy Xác nhận phù hợp Chọn lớp Tất cả Lớp 12 Lớp 11 Lớp 10 Lớp 9 Lớp 8 Lớp 7 Lớp 6 Lớp 5 Lớp 4 Lớp 3 Lớp 2 Lớp 1 Môn học Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Tiếng anh thí điểm Đạo đức Tự nhiên và xã hội Khoa học Lịch sử và Địa lý Tiếng việt Khoa học tự nhiên Hoạt động trải nghiệm Hoạt động trải nghiệm, hướng nghiệp Giáo dục kinh tế và pháp luật Mới nhất Mới nhất Chưa trả lời Câu hỏi hay Tú Uyênn Tú Uyênn 20 tháng 6 2020 lúc 23:10

Cho số thực a,b,c sao cho pt \(z^3+az^2+bz+c=0\) nhận \(z=1+i\)\(z=2\) làm nghiệm của pt. Khi đó tổng gtri a,b,c là

A.-2

B. 2

C. 4

D. -4

Lớp 12 Toán Chương 4: SỐ PHỨC Những câu hỏi liên quan Pham Trong Bach
  • Pham Trong Bach
17 tháng 10 2017 lúc 17:05 Cho phương trình z 3 + a z 2 + b z + c 0  nhận z 2  và z 1 + i  làm các nghiệm của phương trình. Khi đó a - b + c  làĐọc tiếp

Cho phương trình z 3 + a z 2 + b z + c = 0  nhận z = 2  và z = 1 + i  làm các nghiệm của phương trình. Khi đó a - b + c  là

Xem chi tiết Lớp 12 Toán 1 0 Khách Gửi Hủy Cao Minh Tâm Cao Minh Tâm 17 tháng 10 2017 lúc 17:06

Đáp án A.

Đúng 0 Bình luận (0) Khách Gửi Hủy Pham Trong Bach
  • Pham Trong Bach
29 tháng 10 2017 lúc 4:29 Tìm các số thực a,b,c để phương trình (ẩn z) z 3 + a z 2 + b z + c 0  nhận z 1 + i  và z 2  làm nghiệmĐọc tiếp

Tìm các số thực a,b,c để phương trình (ẩn z) z 3 + a z 2 + b z + c = 0  nhận z = 1 + i  và z = 2  làm nghiệm

Xem chi tiết Lớp 12 Toán 1 0 Khách Gửi Hủy Cao Minh Tâm Cao Minh Tâm 29 tháng 10 2017 lúc 4:29

Đáp án C.

Đúng 0 Bình luận (0) Khách Gửi Hủy Nguyễn Văn Toán
  • Nguyễn Văn Toán
30 tháng 1 2021 lúc 10:31

cho số thực a. Biết pt $z^4+az^2+1=0$ có 4 nghiệm $z_1,z_2,z_3,z_4$ thỏa mãn $(z_1^2+4)(z_2^2+4)(z_3^2+4)(z_4^2+4)=441$. Tính a

Xem chi tiết Lớp 12 Toán 1 0 Khách Gửi Hủy Minh Hồng Minh Hồng 30 tháng 1 2021 lúc 15:55

Đặt \(t=z^2\), ta có phương trình \(t^2+at+1=0 \qquad (1)\)

\(\Delta =a^2-4\)

PT đã cho có 4 nghiệm \(\Leftrightarrow\) (1) phải có hai nghiệm phân biệt

\(\Leftrightarrow \Delta\ne 0\Leftrightarrow a\ne \pm2\)

Khi đó (1) có nghiệm \(t=\dfrac{-a\pm \sqrt{a^2-4}}{2}\).

Không mất tính tổng quát, ta có thể giả sử: \(z_1=z_3;z_2=z_4\)

Khi đó ta có:

\([(z_1^2+4)(z_2^2+4)]^2=441\\ \Leftrightarrow \left(\dfrac{-a+\sqrt{a^2-4}}{2}+4\right)\left(\dfrac{-a-\sqrt{a^2-4}}{2}+4\right)=441\)

\(\Leftrightarrow (-a+8)^2-(a^2-4)=4.441\\ \Leftrightarrow -16a+68=1764\\ \Leftrightarrow a=-106\)

 

Đúng 1 Bình luận (2) Khách Gửi Hủy Huỳnh Quang Minh
  • Huỳnh Quang Minh
5 tháng 9 2016 lúc 18:49

Cho a, b, c ε R, a # 0, z1 và z2 là hai nghiệm của phương trình az2 + bz + c = 0 

Hãy tính z1 + z2 và z1 z2 theo các hệ số a, b, c. 

 

Xem chi tiết Lớp 12 Toán Chương 1:ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ... 0 0 Khách Gửi Hủy Huỳnh Quang Minh
  • Huỳnh Quang Minh
5 tháng 9 2016 lúc 19:01

Cho a, b, c ε R, a # 0, z1 và z2 là hai nghiệm của phương trình az2 + bz + c = 0 

Hãy tính z1 + z2 và z1 z2 theo các hệ số a, b, c.

 

Xem chi tiết Lớp 12 Toán Chương 2: HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LÔG... 1 0 Khách Gửi Hủy Hoàng Lê Bảo Ngọc Hoàng Lê Bảo Ngọc 5 tháng 9 2016 lúc 19:59

Áp dụng hệ thức Vi-et , ta có \(\begin{cases}z_1+z_2=-b\\z_1.z_2=c\end{cases}\)

Đúng 0 Bình luận (0) Khách Gửi Hủy Pham Nhu Yen
  • Pham Nhu Yen
15 tháng 2 2016 lúc 18:15

Cho a, b, c là các số thực khác 0. Tìm các số thực x, y, z khác 0 thỏa mãn xy/ay + bx = yz/bz+cy = zx/cx+az = x^2+y^2+z^2 / a^2 +b^2 +c^2

LÀM GIÚP MK NHA GẤP LẮM ĐÓ

GHI RÕ CÁCH LÀM, MK TIK CHO

Xem chi tiết Lớp 7 Toán Câu hỏi của OLM 2 0 Khách Gửi Hủy Nguyen Van Thanh Nguyen Van Thanh 14 tháng 11 2016 lúc 22:50

Từ giả thiết suy ra (ay+bx)/xy = (bz+cy)/yz =(cx+az)/xz  hay a/x =b/y =c/z.

dặt x/a =y=b =z/c =k suy ra x =ak; y=bk; z=ck. thay vào biểu thức bài cho tìm được k=1/2

vậy x =a/2; y=b/2; z=c/2

Đúng 0 Bình luận (0) Khách Gửi Hủy Khánh Nguyễn Nam Khánh Nguyễn Nam 14 tháng 6 2020 lúc 21:16

\(\frac{xy}{ay+bx}\)=\(\frac{yz}{bz+cy}\)=\(\frac{zx}{cx+az}\left(1\right)\)

\(\Rightarrow\)\(\frac{xyz}{ayz+bxz}\)=\(\frac{xyz}{bzx+cyx}\)=\(\frac{zyx}{cxy+azy}\)

\(\Rightarrow\)\(ayz+bxz=bzx+cyx=cxy+azy\)

\(\Rightarrow\)\(\hept{\begin{cases}ayz+bxz=bxz+cyx\\bzx+cyx=cxy+azy\\ayz+bxz=cxy+azy\end{cases}}\Rightarrow\hept{\begin{cases}ayz=cyx\\bzx=azy\\bxz=cxy\end{cases}}\)\(\Rightarrow\hept{\begin{cases}az=cx\\bx=ay\\bz=cy\end{cases}\left(2\right)}\)

thay (2) vào (1)

\(\Rightarrow\)\(\frac{xy}{2ay}\)=\(\frac{yz}{2bz}\)=\(\frac{zx}{2cx}\)

\(\Rightarrow\)\(\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}\)\(=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(3\right)\)

\(\Rightarrow\left(\frac{x}{2a}\right)^2=\left(\frac{y}{2b}\right)^2=\left(\frac{z}{2c}\right)^2\)

\(\Rightarrow\text{​​}\text{​​}\)\(\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}\)

theo quy luật của dãy số bằng nhau, nên

\(\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}=\)\(\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}=\frac{\left(x^2+y^2+z^2\right)}{4\left(a^2+b^2+c^2\right)}=\frac{1}{4}\left(4\right)\)

từ (3) và (4)

\(\Rightarrow\)\(\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{1}{4}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{a}{2}\\y=\frac{b}{2}\\c=\frac{c}{2}\end{cases}}\)

Đúng 0 Bình luận (0) Khách vãng lai đã xóa Khách Gửi Hủy Nghiêm Thảo Tâm
  • Nghiêm Thảo Tâm
24 tháng 12 2015 lúc 20:50

cho a,b,c là số thực # 0. Tìm x,y,z là số thực # 0 thỏa mãn xy/ay+bx=yz/bz+cy=zx/cx+az=x^2+y^2+z^2/a^2+b^2+c^2

Giải chi tiết nha

Xem chi tiết Lớp 7 Toán Câu hỏi của OLM 0 0 Khách Gửi Hủy Pham Trong Bach
  • Pham Trong Bach
21 tháng 12 2018 lúc 13:02 Cho phương trình  z 3 + a z 2 + b z + c 0 . Nếu  z 1 − i  và  z 1  là hai nghiệm của phương trình thì  a − b − c  bằng (a, b, c là số thực). A. 2 B. 3 C. 5 D. 6Đọc tiếp

Cho phương trình  z 3 + a z 2 + b z + c = 0 . Nếu  z = 1 − i  và  z = 1  là hai nghiệm của phương trình thì  a − b − c  bằng (a, b, c là số thực).

A. 2

B. 3

C. 5

D. 6

Xem chi tiết Lớp 0 Toán 1 0 Khách Gửi Hủy Cao Minh Tâm Cao Minh Tâm 21 tháng 12 2018 lúc 13:02

Đáp án C

Đúng 0 Bình luận (0) Khách Gửi Hủy Phan Thanh Tú
  • Phan Thanh Tú
4 tháng 12 2017 lúc 17:11

Cho a,b,c là các số thực khác 0 tìm các số thực x,y,z khác 0 thoả mãn

xy/ay+bx=yz/bz+cy=zx/cx+az=

X^2+y^2+z^2/a^2+b^2+c^2

Xem chi tiết Lớp 7 Toán Câu hỏi của OLM 0 0 Khách Gửi Hủy

Khoá học trên OLM (olm.vn)

  • Toán lớp 12
  • Ngữ văn lớp 12
  • Tiếng Anh lớp 12
  • Vật lý lớp 12
  • Hoá học lớp 12
  • Sinh học lớp 12
  • Lịch sử lớp 12
  • Địa lý lớp 12
  • Giáo dục công dân lớp 12

Đề thi đánh giá năng lực

  • Đại học Quốc gia Hà Nội
  • Đại học Quốc gia Hồ Chí Minh
  • Đại học Bách khoa Hà Nội

Từ khóa » Cho Phương Trình Z^3+az^2+bz+c=0