Cho Tập A = {2;5}. Hỏi Có Thể Lập được Bao Nhiêu Số Có 10 Chữ Số ...

TH1: Có 10 chữ số 5: Chỉ có duy nhất 1 số.

TH2: Có 9  chữ số 5 và 1  chữ số 2 .

Xếp 9  chữ số 5  thành 1 hàng ngang có 1 cách. Khi đó ta sẽ tạo nên 10 vách ngăn. Việc còn lại là xếp 1 chữ số 2 vào 10 vách ngăn đó, có 10 cách. Vậy trường hợp này có 10 số.

TH3: Có 8 chữ số 5 và 2  chữ số 2.

Xếp 8 chữ số 5 thành 1 hàng ngang có 1 cách. Khi đó ta sẽ tạo nên 9 vách ngăn. Việc còn lại là xếp 2 chữ số 2 vào 9 vách ngăn đó, có \( C^2_9=36\)  cách. Vậy trường hợp này có 36 số.

TH4: Có 7 chữ số 5  và 3 chữ số 2 .

Xếp 7 chữ số 5 thành 1 hàng ngang có 1 cách. Khi đó ta sẽ tạo nên 8 vách ngăn. Việc còn lại là xếp 3 chữ số 2 vào 8 vách ngăn đó, có \(C63_8=56\)  cách. Vậy trường hợp này có 56 số.

TH5: Có 6 chữ số 5 và 4 chữ số 2 .

Xếp 6 chữ số 5 thành 1 hàng ngang có 1 cách. Khi đó ta sẽ tạo nên 7 vách ngăn. Việc còn lại là xếp 4 chữ số 2 vào 7 vách ngăn đó, có \(C^4_7=35\) cách. Vậy trường hợp này có 35 số.

TH6: Có 55 chữ số 55  và 55 chữ số 22.

Xếp 5 chữ số 5 thành 1 hàng ngang có 1 cách. Khi đó ta sẽ tạo nên 6 vách ngăn. Việc còn lại là xếp 5 chữ số 2 vào 6 vách ngăn đó, có \(C^5_6=6\) cách. Vậy trường hợp này có 6 số.

Theo quy tắc cộng ta có tất cả:

1+10+36+56+35+6=144 số.

Đáp án cần chọn là: A

Từ khóa » Số 1 Và 2 đứng Cạnh Nhau