CHỨNG MINH ĐẲNG THỨC LƯỢNG GIÁC

DẠNG TOÁN 2: CHỨNG MINH ĐẲNG THỨC LƯỢNG GIÁC – CHỨNG MINH BIỂU THỨC KHÔNG PHỤ THUỘC $X$ – ĐƠN GIẢN BIỂU THỨC. 1. PHƯƠNG PHÁP GIẢI + Sử dụng các hệ thức lượng giác cơ bản. + Sử dụng tính chất của giá trị lượng giác. + Sử dụng các hằng đẳng thức đáng nhớ.

2. CÁC VÍ DỤ Ví dụ 1 : Chứng minh các đẳng thức sau (giả sử các biểu thức sau đều có nghĩa). a) ${\sin ^4}x + {\cos ^4}x$ $ = 1 – 2{\sin ^2}x.{\cos ^2}x.$ b) $\frac{{1 + \cot x}}{{1 – \cot x}} = \frac{{\tan x + 1}}{{\tan x – 1}}.$ c) $\frac{{\cos x + \sin x}}{{{{\cos }^3}x}}$ $ = {\tan ^3}x + {\tan ^2}x + \tan x + 1.$

a) ${\sin ^4}x + {\cos ^4}x$ $ = {\sin ^4}x + {\cos ^4}x$ $ + 2{\sin ^2}x{\cos ^2}x$ $ – 2{\sin ^2}x{\cos ^2}x.$ $ = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2}$ $ – 2{\sin ^2}x{\cos ^2}x.$ $ = 1 – 2{\sin ^2}x{\cos ^2}x.$ b) $\frac{{1 + \cot x}}{{1 – \cot x}}$ $ = \frac{{1 + \frac{1}{{\tan x}}}}{{1 – \frac{1}{{\tan x}}}}$ $ = \frac{{\frac{{\tan x + 1}}{{\tan x}}}}{{\frac{{\tan x – 1}}{{\tan x}}}}$ $ = \frac{{\tan x + 1}}{{\tan x – 1}}.$ c) $\frac{{\cos x + \sin x}}{{{{\cos }^3}x}}$ $ = \frac{1}{{{{\cos }^2}x}} + \frac{{\sin x}}{{{{\cos }^3}x}}$ $ = {\tan ^2}x + 1 + \tan x\left( {{{\tan }^2}x + 1} \right).$ $ = {\tan ^3}x + {\tan ^2}x + \tan x + 1.$

Ví dụ 2 : Cho tam giác $ABC.$ Chứng minh rằng: $\frac{{{{\sin }^3}\frac{B}{2}}}{{\cos \left( {\frac{{A + C}}{2}} \right)}}$ $ + \frac{{{{\cos }^3}\frac{B}{2}}}{{\sin \left( {\frac{{A + C}}{2}} \right)}}$ $ – \frac{{\cos (A + C)}}{{\sin B}}.\tan B = 2.$

Vì $A + B + C = {180^0}$ nên: $VT = \frac{{{{\sin }^3}\frac{B}{2}}}{{\cos \left( {\frac{{{{180}^0} – B}}{2}} \right)}}$ $ + \frac{{{{\cos }^3}\frac{B}{2}}}{{\sin \left( {\frac{{{{180}^0} – B}}{2}} \right)}}$ $ – \frac{{\cos \left( {{{180}^0} – B} \right)}}{{\sin B}}.\tan B.$ $ = \frac{{{{\sin }^3}\frac{B}{2}}}{{\sin \frac{B}{2}}} + \frac{{{{\cos }^3}\frac{B}{2}}}{{\cos \frac{B}{2}}}$ $ – \frac{{ – \cos B}}{{\sin B}}.\tan B$ $ = {\sin ^2}\frac{B}{2} + {\cos ^2}\frac{B}{2} + 1$ $ = 2 = VP.$ Suy ra điều phải chứng minh.

Ví dụ 3 : Đơn giản các biểu thức sau (giả sử các biểu thức sau đều có nghĩa): a) $A = \sin \left( {{{90}^0} – x} \right)$ $ + \cos \left( {{{180}^0} – x} \right)$ $ + {\sin ^2}x\left( {1 + {{\tan }^2}x} \right)$ $ – {\tan ^2}x.$ b) $B = \frac{1}{{\sin x}}.\sqrt {\frac{1}{{1 + \cos x}} + \frac{1}{{1 – \cos x}}} – \sqrt 2 .$

a) $A = \cos x – \cos x$ $ + {\sin ^2}x.\frac{1}{{{{\cos }^2}x}}$ $ – {\tan ^2}x = 0.$ b) $B = \frac{1}{{\sin x}} \cdot \sqrt {\frac{{1 – \cos x + 1 + \cos x}}{{(1 – \cos x)(1 + \cos x)}}} – \sqrt 2 .$ $ = \frac{1}{{\sin x}}.\sqrt {\frac{2}{{1 – {{\cos }^2}x}}} – \sqrt 2 $ $ = \frac{1}{{\sin x}}.\sqrt {\frac{2}{{{{\sin }^2}x}}} – \sqrt 2 .$ $ = \sqrt 2 \left( {\frac{1}{{{{\sin }^2}x}} – 1} \right)$ $ = \sqrt 2 {\cot ^2}x.$

Ví dụ 4 : Chứng minh biểu thức sau không phụ thuộc vào $x.$ $P = \sqrt {{{\sin }^4}x + 6{{\cos }^2}x + 3{{\cos }^4}x} $ $ + \sqrt {{{\cos }^4}x + 6{{\sin }^2}x + 3{{\sin }^4}x} .$

$P = \sqrt {{{\left( {1 – {{\cos }^2}x} \right)}^2} + 6{{\cos }^2}x + 3{{\cos }^4}x} $ $ + \sqrt {{{\left( {1 – {{\sin }^2}x} \right)}^2} + 6{{\sin }^2}x + 3{{\sin }^4}x} .$ $ = \sqrt {4{{\cos }^4}x + 4{{\cos }^2}x + 1} $ $ + \sqrt {4{{\sin }^4}x + 4{{\sin }^2}x + 1} .$ $ = 2{\cos ^2}x + 1 + 2{\sin ^2}x + 1.$ $ = 3.$ Vậy $P$ không phụ thuộc vào $x.$

3. BÀI TẬP LUYỆN TẬP Bài 1 : Chứng minh các đẳng thức sau (giả sử các biểu thức sau đều có nghĩa): a) ${\tan ^2}x – {\sin ^2}x = {\tan ^2}x.{\sin ^2}x.$ b) ${\sin ^6}x + {\cos ^6}x = 1 – 3{\sin ^2}x.{\cos ^2}x.$ c) $\frac{{{{\tan }^3}x}}{{{{\sin }^2}x}} – \frac{1}{{\sin x\cos x}} + \frac{{{{\cot }^3}x}}{{{{\cos }^2}x}}$ $ = {\tan ^3}x + {\cot ^3}x.$ d) ${\sin ^2}x – {\tan ^2}x$ $ = {\tan ^6}x\left( {{{\cos }^2}x – {{\cot }^2}x} \right).$ e) $\frac{{{{\tan }^2}a – {{\tan }^2}b}}{{{{\tan }^2}a.{{\tan }^2}b}}$ $ = \frac{{{{\sin }^2}a – {{\sin }^2}b}}{{{{\sin }^2}a.{{\sin }^2}b}}.$

a) $VT = \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} – {\sin ^2}x$ $ = {\sin ^2}x\left( {1 + {{\tan }^2}x} \right) – {\sin ^2}x$ $ = VP.$ b) ${\sin ^6}x + {\cos ^6}x$ $ = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3}$ $ – 3{\sin ^2}x.{\cos ^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)$ $ = 1 – 3{\sin ^2}x.{\cos ^2}x.$ c) $VT = {\tan ^3}x\left( {{{\cot }^2}x + 1} \right)$ $ – \tan x\left( {{{\cot }^2}x + 1} \right)$ $ + {\cot ^3}x\left( {{{\tan }^2}x + 1} \right)$ $ = \tan x + {\tan ^3}x – \cot x$ $ – \tan x + \cot x + {\cot ^3}x = VP.$ d) $VP = {\tan ^6}x{\cos ^2}x – {\tan ^6}x{\cot ^2}x$ $ = {\tan ^4}x{\sin ^2}x – {\tan ^4}x$ $ = {\tan ^4}x.{\cos ^2}x$ $ = {\tan ^2}x.{\sin ^2}x$ $ = {\tan ^2}x – {\sin ^2}x = VT$ (do câu a). e) $VT = \frac{1}{{{{\tan }^2}b}} – \frac{1}{{{{\tan }^2}a}}$ $ = {\cot ^2}b – {\cot ^2}a$ $ = \frac{1}{{{{\sin }^2}b}} – \frac{1}{{{{\sin }^2}a}} = VP.$

Bài 2 : Đơn giản các biểu thức sau (giả sử các biểu thức sau đều có nghĩa): a) $A = \frac{1}{{{{\cos }^2}x}}$ $ – {\tan ^2}\left( {{{180}^0} – x} \right)$ $ – {\cos ^2}\left( {{{180}^0} – x} \right).$ b) $B = \frac{{{{\cos }^2}x – {{\sin }^2}x}}{{{{\cot }^2}x – {{\tan }^2}x}} – {\cos ^2}x.$ c) $C = \frac{{{{\sin }^3}a + {{\cos }^3}a}}{{{{\cos }^2}a + \sin a(\sin a – \cos a)}}.$ d) $D = \sqrt {\frac{{1 + \sin a}}{{1 – \sin a}}} + \sqrt {\frac{{1 – \sin a}}{{1 + \sin a}}} .$

a) $A = {\tan ^2}x + 1$ $ – {\tan ^2}x – {\cos ^2}x$ $ = {\sin ^2}x.$ b) $B = \frac{{{{\cos }^2}x – {{\sin }^2}x}}{{\frac{1}{{{{\sin }^2}x}} – 1 – \frac{1}{{{{\cos }^2}x}} + 1}}$ $ – {\cos ^2}x$ $ = {\cos ^2}x{\sin ^2}x – {\cos ^2}x$ $ = – {\cos ^4}x.$ c) $C = $ $\frac{{(\sin a + \cos a)\left( {{{\sin }^2}a – \sin a\cos a + {{\cos }^2}a} \right)}}{{{{\sin }^2}a – \sin a\cos a + {{\cos }^2}a}}$ $ = \sin a + \cos a.$ d) ${D^2} = $ $\frac{{1 + \sin a}}{{1 – \sin a}} + \frac{{1 – \sin a}}{{1 + \sin a}} + 2$ $ = \frac{{{{(1 + \sin a)}^2} + {{(1 – \sin a)}^2}}}{{1 – {{\sin }^2}a}} + 2$ $ = \frac{{2 + 2{{\sin }^2}a}}{{{{\cos }^2}a}} + 2$ $ = \frac{4}{{{{\cos }^2}a}}.$ Suy ra $D = \frac{2}{{|\cos a|}}.$

Bài 3 : Chứng minh biểu thức sau không phụ thuộc vào $\alpha $ (giả sử các biểu thức sau đều có nghĩa): a) $2\left( {{{\sin }^6}\alpha + {{\cos }^6}\alpha } \right)$ $ – 3\left( {{{\sin }^4}\alpha + {{\cos }^4}\alpha } \right).$ b) ${\cot ^2}{30^0}\left( {{{\sin }^8}\alpha – {{\cos }^8}\alpha } \right)$ $ + 4\cos {60^0}\left( {{{\cos }^6}\alpha – {{\sin }^6}\alpha } \right)$ $ – {\sin ^6}\left( {{{90}^0} – \alpha } \right){\left( {{{\tan }^2}\alpha – 1} \right)^3}.$ c) $\left( {{{\sin }^4}x + {{\cos }^4}x – 1} \right)$$\left( {{{\tan }^2}x + {{\cot }^2}x + 2} \right).$ d) $\frac{{{{\sin }^4}x + 3{{\cos }^4}x – 1}}{{{{\sin }^6}x + {{\cos }^6}x + 3{{\cos }^4}x – 1}}.$

a) $2\left( {{{\sin }^6}\alpha + {{\cos }^6}\alpha } \right)$ $ – 3\left( {{{\sin }^4}\alpha + {{\cos }^4}\alpha } \right).$ $ = 2\left( {1 – 3{{\sin }^2}x.{{\cos }^2}x} \right)$ $ – 3\left( {1 – 2{{\sin }^2}x.{{\cos }^2}x} \right) = – 1.$ b) ${\cot ^2}{30^0}\left( {{{\sin }^8}\alpha – {{\cos }^8}\alpha } \right)$ $ + 4\cos {60^0}\left( {{{\cos }^6}\alpha – {{\sin }^6}\alpha } \right)$ $ – {\sin ^6}\left( {{{90}^0} – \alpha } \right){\left( {{{\tan }^2}\alpha – 1} \right)^3}.$ $ = 3\left( {{{\sin }^2}\alpha – {{\cos }^2}\alpha } \right)\left( {{{\sin }^4}\alpha + {{\cos }^4}\alpha } \right)$ $ – 2\left( {{{\sin }^2}\alpha – {{\cos }^2}\alpha } \right)$$\left( {{{\sin }^4}\alpha + {{\sin }^2}\alpha {{\cos }^2}\alpha + {{\cos }^4}\alpha } \right)$ $ – {\left( {{{\sin }^2}\alpha – {{\cos }^2}\alpha } \right)^3}.$ $ = {\left( {{{\sin }^2}\alpha – {{\cos }^2}\alpha } \right)^3}$ $ – {\left( {{{\sin }^2}\alpha – {{\cos }^2}\alpha } \right)^3} = 0.$ c) $\left( {{{\sin }^4}x + {{\cos }^4}x – 1} \right)$$\left( {{{\tan }^2}x + {{\cot }^2}x + 2} \right)$ $ = – 2.$ d) $\frac{{{{\sin }^4}x + 3{{\cos }^4}x – 1}}{{{{\sin }^6}x + {{\cos }^6}x + 3{{\cos }^4}x – 1}}$ $ = \frac{2}{3}.$

Từ khóa » Các Bài Tập Về Chứng Minh đẳng Thức Lượng Giác