Chuyên đề: Định Lí Lagrange Và ứng Dụng
Có thể bạn quan tâm
- Trang Chủ
- Đăng ký
- Đăng nhập
- Upload
- Liên hệ

Chúng ta sẽ đi tìm hiểu 3 bài toán sử dụng định lí Lagrange trong chương trình THPT như sau:
I. Sử dụng định lí Lagrange chứng minh bất đẳng thức.
II. Sử dụng định lí Lagrange chứng minh phương trình có nghiệm.
III. Sử dụng định lí Lagrange giải phương trình.
ngochoa2017
13347
4 Download Bạn đang xem tài liệu "Chuyên đề: Định lí Lagrange và ứng dụng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trênChuyên đề: ĐỊNH LÍ LAGRANGE VÀ ỨNG DỤNG A. GIỚI THIỆU Định lí Lagrange được phát biểu như sau: Cho hàm số F(x) liên tục trên [a,b] và có đạo hàm trong khoảng (a,b) thì luôn tồn tại sao cho: Chúng ta sẽ đi tìm hiểu 3 bài toán sử dụng định lí Lagrange trong chương trình THPT như sau: I. Sử dụng định lí Lagrange chứng minh bất đẳng thức. II. Sử dụng định lí Lagrange chứng minh phương trình có nghiệm. III. Sử dụng định lí Lagrange giải phương trình. B. NỘI DUNG I. SỬ DỤNG ĐỊNH LÍ LAGRANGE CHỨNG MINH BẤT ĐẲNG THỨC. * Phương pháp Từ định lí Lagrange , nếu thì: Vậy Từ định lí Lagrange để áp dụng được kết quả trên, điều quan trọng nhất là xác định được hàm số F(x). *Ví dụ minh họa VD1: CMR nếu th×: Giải Bất đẳng thức đã cho tương đương với: Xét hàm số: liên tục trên, và có đạo hàm trong khoảng . Theo định lí Lagrange luôn tồn tại sao cho: Ta có: (đpcm). NX: Điều quan trọng hơn cả trong bài toán này là chúng ta nhận ra được hàm số F(x) qua việc biến đổi tương đương BPT đã cho. Ta xét VD 2 VD 2: Cho . Chứng minh: Giải BĐT đã cho tương đương với: Đặt với Ta có: AD định lí Lagrange đối với hàm số: trên , thì tồn tại sao cho: . Từ (1) suy ra: Suy ra: (đpcm). NX: Bài này khó hơn bài trên ở chỗ phải tinh ý lấy logaNepe hai vế mới nhận ra đựơc hàm số f (x). VD 3: Cho a<b<c. CMR: Giải Xét hàm số: Theo định lí Lagrange tồn tại sao cho: Ta thấy: Từ (1) Do đó, từ . Suy ra: II. SỬ DỤNG ĐỊNH LÍ LAGRANGE CHỨNG MINH PHƯƠNG TRÌNH CÓ NGHIỆM. *Phương pháp: Từ định lí Lagrange, nếu F(b)-F(a)=0 thì tồn tại sao cho: phương trình có nghiệm thuộc Để áp dụng được định lí Lagrange phải nhận ra hàm số F (x) (thực ra nó là nguyên hàm của hàm số f(x)). Dạng bài toán này làm theo các bước sau: Bước 1: Xác định hàm số F(x) liên tục trên [a,b] và có đạo hàm trên (a,b), thoả mãn: a. F'(x)=f(x). b. F(b)-F(a)=0. Bước 2: Khi đó tồn tại sao cho: phương trình f(x)= 0 có nghiệm . *Ví dụ minh hoạ: VD1: CMR phương trình: có nghiệm với mọi a,b,c. Giải Xét hàm số: Dễ dàng nhận thấy: Khi đó tồn tại sao cho: Vậy phương trình đã cho có nghiệm thuộc khoảng . VD 2: Giả sử: . CMR phương trình: có nghiệm thuộc khoảng (0, 1) Giải Xét hàm số: liên tục trên [0,1] và có đạo hàm trong khoảng (0,1). Ta có: Khi đó tồn tại sao cho: Vậy phương trình đã cho có nghiệm thụôc khoảng (0,1). Từ VD2 ta có thể giải được bài toán sau: VD3: Giả sử: . CMR phương trình: có nghiệm thuộc khoảng (0,1). Giải Xét hàm số: Nhận thấy, F(x) liên tục trên [0,1] và có đạo hàm trong khoảng (0,1). Ta có: Khi đó tồn tại sao cho: V ì n ên ta c ó: . V ậy ph ư ơng tr ình đ ã cho c ó nghi ệm thu ộc kho ảng (0,1). III. SỬ DỤNG ĐỊNH LÍ LAGRANGE GI ẢI PH Ư ƠNG TR ÌNH. * Phương pháp: Đ ể áp d ụng đ ịnh l í Lagrange vào việc giải phương trình ta thực hiện theo các bước sau đây: Bước 1: Gọi l à nghi ệm c ủa ph ư ơng tr ình. Bước 2: Biến đổi phương trình về dạng thích hợp , từ đó chỉ ra hàm số liên tục trên [a,b] và có đạo hàm trên khoảng (a,b). Khi đó theo định lí Lagrange tồn tại sao cho: (*) Bước 3: Giải (*), ta xác định được . Bước 4: Thử lại * Ví dụ minh họa: VD 1: Giải phương trình: . Giải Gọi là nghiệm của phương trình đã cho. Ta được: (1) Xét hàm số: . Khi đó: (1) Vì F(t) liên tục trên [3,4] và có đạo hàm trong khoảng (3,4), do đó theo định lí Lagrange tồn tại sao cho: Thử lại và thấy đúng. Vậy phương trình có hai nghiệm x=0 và x=1. VD 2: Giải phương trình: Giải Gọi là nghiệm của phương trình đã cho, ta có: (2). Xét hàm số: , khi đó: Vì F(t) liên tục trên [2,3] và có đạo hàm trên (2,3), do đó theo định lí Lagrange luôn tồn tại sao cho: Thử lại thấy đúng. vậy phương trình có hai họ nghiệm và . C. BÀI TẬP ÁP DỤNG 1. CMR nếu x>y> 0 thì 2. CMR phương trình: 3. Giải các phương trình sau: 1. 2. Tài liệu đính kèm:
On thi DHDINH LI LAGRANGE VA UNG DUNG.doc
Đề 1 thi thử đại học năm học 2009
Lượt xem: 821
Lượt tải: 0
Giáo án Giải tích tổ hợp - Xác suất: Phương trình , bất phương trình , hệ phương trình chứa Pn, Pkn, Ckn
Lượt xem: 3465
Lượt tải: 0
Hướng dẫn ôn thi – Đại học môn Toán: Số phức
Lượt xem: 1244
Lượt tải: 0
Giáo án Tự chọn Giải tích 12 - Nâng cao - Trọn bộ
Lượt xem: 1865
Lượt tải: 0
Đề thi học kì 1 môn Toán lớp 12 (Đề số 8)
Lượt xem: 1473
Lượt tải: 0
Giáo án Giải tích 12 - Tiết 67, 68 - Ôn tập chương III
Lượt xem: 890
Lượt tải: 0
Đề và đáp án thi tuyển sinh đại học năm 2011 môn: Toán; khối: B
Lượt xem: 1786
Lượt tải: 0
Đề luyện thi đại học môn Toán có đáp án
Lượt xem: 1387
Lượt tải: 0
Đề thi thử đại học lần thứ nhất khối B, D môn: Toán
Lượt xem: 1362
Lượt tải: 0
Giáo án Giải tích 12 - Trường THPT Lê Trung Đình - Chương II
Lượt xem: 1010
Lượt tải: 0
Copyright © 2025 Lop12.net - Giáo án điện tử lớp 12, Sáng kiến kinh nghiệm hay, chia sẻ thủ thuật phần mềm
Từ khóa » định Lý Lagrange Số Học
-
Định Lý Lagrange (lý Thuyết Số) – Wikipedia Tiếng Việt
-
Định Lí Lagrange Và ứng Dụng - Đề Thi Mẫu
-
Định Lý Lagrange - Tài Liệu Text - 123doc
-
Định Lý Lagrange (lý Thuyết Số) - Du Học Trung Quốc
-
Chứng Minh định Lý Lagrange - Giải Tích - Diễn đàn Toán Học
-
[PDF] ỨNG DỤNG CỦA ĐỊNH LÝ LAGRANGE - Toán Tự Học
-
[TOÁN CAO CẤP/GIẢI TÍCH ] ĐỊNH LÝ LAGRANGE (ĐỊNH LÝ GIÁ ...
-
Định Lý Lagrange Là Gì? Xem Xong 5 Phút Hiểu Luôn. - Tintuctuyensinh
-
[PDF] TRƯỜNG THPT CHUYÊN TIỀN GIANG
-
TOÁN CAO CẤP 2 - ĐỊNH LÝ Rolle, Lagrange - Câu Cho điểm
-
Định Lý Lagrange Và ứng Dụng - Giáo Án, Bài Giảng
-
Một Số ứng Dụng Của định Lý Lagrange Trong đại Số | Xemtailieu
-
[PDF] MỘT SỐ PHƯƠNG PHÁP HÀM ĐỂ GIẢI PHƯƠNG TRÌNH VÀ ... - VNU
-
Sáng Kiến Kinh Nghiệm Một Số ứng Dụng Của định Lý Lagrange Và ...