Chuyên đề Trục Căn Thức ở Mẫu Của Biểu Thức: Lý Thuyết Và Bài Tập
Có thể bạn quan tâm
Cách biến đổi đơn giản căn thức bậc hai
Dưới đây là những kiến thức cần nhớ về cách biến đổi đơn giản căn thức bậc hai:


Trục căn thức tại mẫu của biểu thức
Dưới đây là lý thuyết và cách làm bài trục căn thức mẫu của phân số:
Với các biểu thức \(A,B (B>0)\), ta có;
\(A,B (B>0)\)
Với các biểu thức \(A,B,C (A\geq 0, A\neq B^{2}) \)
Ta có:
\(\frac{C}{\sqrt{A}+B}=\frac{C(\sqrt{A}-B)}{A-B^{2}} \)
\(\frac{C}{\sqrt{A}-B}=\frac{C(\sqrt{A}+B)}{A-B^{2}}\)
Với các biểu thức \(A,B,C (A\geq 0,B\geq 0,A\neq B)\)
Ta có:
\(\frac{C}{\sqrt{A}+\sqrt{B}}=\frac{C(\sqrt{A}-\sqrt{B})}{A-B}\)
\(\frac{C}{\sqrt{A}-\sqrt{B}}=\frac{C(\sqrt{A}+\sqrt{B})}{A-B}\)
Bài tập trục căn thức ở mẫu lớp 9
Bài 50 (trang 30 SGK Toán 9 Tập 1): Trục căn thức mẫu với giả thiết các biểu thức chữ đều có nghĩa.
\(\frac{5}{\sqrt{10}}=\frac{5\sqrt{10}}{\sqrt{10}.\sqrt{10}}=\frac{5\sqrt{10}}{10}=\frac{\sqrt{10}}{2}\)
\(\frac{1}{3\sqrt{20}}=\frac{1}{3\sqrt{2^{2}.5}}=\frac{1}{3.2\sqrt{5}}=\frac{1\sqrt{5}}{6\sqrt{5}.\sqrt{5}}=\frac{\sqrt{5}}{6.5}=\frac{\sqrt{5}}{30}\)
\(\frac{2\sqrt{2}+2}{5\sqrt{2}}=\frac{(2\sqrt{2}+2)\sqrt{2}}{5\sqrt{2}.\sqrt{2}}=\frac{2(\sqrt{2})^{2}+2\sqrt{2}}{5.2}=\frac{4+2\sqrt{2}}{10}=\frac{2+\sqrt{2}}{5}\)
Bài 52 trang 30 SGK toán 9 tập 1 Trục căn thức mẫu với giả thiết các biểu thức chữ đều có nghĩa.
\(\frac{1}{\sqrt{x}-\sqrt{y}};\frac{2ab}{\sqrt{a}-\sqrt{b}}\)
- \(\frac{1}{\sqrt{x}-\sqrt{y}}=\frac{1(\sqrt{x}+\sqrt{y})}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}=\frac{(\sqrt{x}+\sqrt{y})}{x-y}\)
(Do \(x\neq y\) nên \(\sqrt{x}\neq \sqrt{y}\)
- \(\frac{2ab}{\sqrt{a}-\sqrt{b}}=\frac{2ab(\sqrt{a}+\sqrt{b})}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}=\frac{2ab(\sqrt{a}+\sqrt{b})}{a-b}\)
(Do \(a\neq b\) nên \(\sqrt{a}\neq \sqrt{b}.\)
Các bài toán trục căn thức ở mẫu khó
Ví dụ 1: Trục căn thức mẫu các biểu thức sau
- \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)
- \(\frac{26}{5-2\sqrt{3}}\)
Hướng dẫn giải:

Ví dụ 2: Trục căn thức mẫu


Lý thuyết trục căn thức ở mẫu bậc 3
Công thức:
\(\frac{M}{\sqrt[3]{a}\pm \sqrt[3]{b}}=\frac{M(\sqrt[3]{a^{2}}\pm \sqrt[3]{ab}+\sqrt[3]{b^{2}})}{(\sqrt[3]{a}\pm \sqrt[3]{b})(\sqrt[3]{a^{2}}\pm \sqrt[3]{ab}+\sqrt[3]{b^{2}})}=\frac{M(\sqrt[3]{a^{2}}\pm \sqrt[3]{ab}+\sqrt[3]{b^{2}})}{a\pm b}\)
Ví dụ: Trục căn thức mẫu: \(\frac{1}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}\)
Hướng dẫn giải:
Ta có: \(\frac{1}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}=\frac{\sqrt[3]{3}+\sqrt[3]{2}}{(\sqrt[3]{2}+\sqrt[3]{3})(\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4})}=\frac{\sqrt[3]{2}+\sqrt[3]{3}}{(\sqrt[3]{2})^{3}+(\sqrt[3]{3})^{3})}=\frac{\sqrt[3]{2}+\sqrt[3]{3}}{5}\)
Bài viết trên đây của DINHNGHIA.VN đã giúp bạn tổng hợp kiến thức cách biến đổi đơn giản căn thức bậc hai cũng như chuyên đề trục căn thức tại mẫu. Chúc bạn luôn học tập tốt!
m thêm >>> Cách xác định tâm đường tròn ngoại tiếp tam giác – Toán học lớp 9
Từ khóa » Căn Ab Bằng Gì
-
Một Số Công Thức Cần Lưu ý Của Chương Căn Bậc Hai, Căn Bậc Ba
-
Các Công Thức Biến đổi Căn Thức Bậc Hai Và Bài Tập Vận Dụng
-
Căn Thức Bậc Hai - Lý Thuyết Toán 9
-
Rút Gọn ( Căn Bậc Hai Của A-b)( Căn Bậc Hai Của A+b) | Mathway
-
Lý Thuyết Về Căn Bậc Ba. | SGK Toán Lớp 9
-
Các Công Thức Biến đổi Căn Thức Bậc Hai Cần Phải Nhớ Và Bài Tập ...
-
BĐT Côsi (Cơ Bản)
-
Chứng Minh Căn (a+b) < Căn A + Căn B - Lê Nhật Minh - HOC247
-
Chứng Minh Với Hai Số Dương A,b Thì A+b >=2 Căn(ab) - HOC247
-
Căn Bậc N – Wikipedia Tiếng Việt
-
Căn Thức Bậc Hai Và Hằng đẳng Thức Căn Bậc Hai Của Bình Phương
-
PHƯƠNG TRÌNH – BẤT PHƯƠNG TRÌNH ~ GIÁ TRỊ TUYỆT ĐỐI
-
Trục Căn Thức ở Mẫu Của Biểu Thức: Lý Thuyết Và Bài Tập