Chuyển Gene ở Thực Vật - Sinh Học Phân Tử

Sinh Học Phân Tử

Bài đăng nổi bật

Công nghệ DNA tái tổ hợp

I. Mở đầu Vào năm 1973, một nhóm các nhà khoa học đã tạo ra cơ thể sinh vật đầu tiên với các phân tử DNA tái tổ hợp. Theo đó, Cohen...

  • Home
  • Liên kết trang
  • _Labinsider.vn
  • _hoachatthinghiem
  • _SBC Scientific
  • _Biospace
  • Micropipettes
  • _Gilson Pháp
  • __Pipet Cơ
  • __Pipet điện tử
  • __Kỹ thuật Pipet
  • _Metler Toledo
  • __Pipet cơ
  • __Pipet điện tử
  • __Kỹ thuật Pipet
  • _Vật tư tiêu hao
  • _Khuyến mãi
  • SHPT là gì
  • Di Truyền
  • Chuyển gene
  • Điện Di
  • Sinh Hóa
  • PCR

Danh sách Blog của Tôi

Chủ Nhật, 24 tháng 12, 2017

chuyen gene Chuyển gene ở thực vật Chuyển gene ở thực vật in chuyen gene

Công nghệ chuyển gene ở thực vật là gì?

Phương pháp này được thực hiện bằng cách chuyển hạt phấn từ cây này sang nhụy hoa của cây khác. Tuy nhiên, phép lai chéo này bị hạn chế bởi nó chỉ có thể thực hiện được giữa các cá thể cùng loài (lai gần), lai giữa những các thể khác loài (lai xa) thường bị bất thụ do đó không thể tạo ra con lai được. Tuy nhiên, lai gần cũng phải mất nhiều thời gian mới thu được những kết quả mong muốn và thông thường những tính trạng quan tâm lại không tồn tại trong những loài có họ hàng gần nhau. Ngày nay, công nghệ chuyển gen cho phép nhà tạo giống cùng lúc đưa vào một loài cây trồng những gen mong muốn có nguồn gốc từ những cơ thể sống khác nhau, không chỉ giữa các loài có họ gần nhau mà còn ở những loài rất xa nhau. Phương pháp hữu hiệu này cho phép các nhà tạo giống thực vật thu được giống mới nhanh hơn và vượt qua những giới hạn của kỹ thuật tạo giống truyền thống. Cây chuyển gen (transgenic plant) là cây mang một hoặc nhiều gen được đưa vào bằng phương thức nhân tạo thay vì thông qua lai tạo như trước đây. Những gen được tạo đưa vào (gen chuyển) có thể được phân lập từ những loài thực vật có quan hệ họ hàng hoặc từ những loài khác biệt hoàn toàn. Thực vật tạo ra được gọi là thực vật “chuyển gen” mặc dù trên thực tế tất cả thực vật đều được “chuyển gen” từ tổ tiên hoang dại của chúng bởi quá trình thuần hóa, chọn lọc và lai giống có kiểm soát trong một thời gian dài. Nhìn chung, việc ứng dụng cây chuyển gen đã có những lợi ích rõ rệt như sau:
  1. Tăng sản lượng.
  2. Giảm chi phí sản xuất.
  3. Tăng lợi nhuận nông nghiệp.
  4. Cải thiện môi trường.
Những cây chuyển gen “thế hệ thứ nhất” đã giúp giảm chi phí sản xuất. Ngày nay, các nhà khoa học đang hướng đến việc tạo ra những cây chuyển gen “thế hệ thứ hai” nhằm tăng các giá trị dinh dưỡng hoặc có những đặc điểm thích hợp cho công nghiệp chế biến. Lợi ích của những cây trồng này hướng trực tiếp hơn vào người tiêu dùng. Chẳng hạn như:
  1. Lúa gạo giàu vitamin A và sắt.
  2. Khoai tây tăng hàm lượng tinh bột.
  3. Vaccine thực phẩm (edible vaccine) ở ngô và khoai tây.
  4. Những giống ngô có thể trồng được trong điều kiện nghèo dinh dưỡng.
  5. Dầu ăn có lợi cho sức khoẻ hơn từ đậu nành và cải dầu.
Tuy nhiên, bên cạnh những ưu điểm cũng có những nguy cơ tiềm ẩn trong việc phát triển những kỹ thuật mới. Bao gồm:
  1. Mối nguy hiểm trong việc vô tình đưa những chất gây dị ứng hoặc làm giảm dinh dưỡng vào thực phẩm.
  2. Khả năng phát tán những gen biến nạp trong cây trồng sang họ hàng hoang dại.
  3. Sâu bệnh có nguy cơ tăng cường tính kháng với các chất độc tiết ra từ cây chuyển gen.
  4. Nguy cơ những chất độc này tác động tới các sinh vật không phải là loại sinh vật cần diệt, vì thế có thể làm mất cân bằng sinh thái.
Nhìn chung, mặc dù còn những điểm còn chưa rõ ràng về cây chuyển gen nhưng với khả năng tạo ra những giống cây trồng mới có giá trị kinh tế, công nghệ này có vai trò không thể phủ nhận được. Tuy vậy, vẫn còn một số vấn đề đáng lo ngại. Để giải quyết những vấn đề này thì những kết luận thu được phải dựa trên những thông tin tin cậy và có cơ sở khoa học. Cuối cùng, vì tầm quan trọng của lương thực thực phẩm cho con người, nên các chính sách liên quan tới cây chuyển gen sẽ phải dựa trên những cuộc tranh luận cởi mở và trung thực có sự tham gia của mọi thành phần trong xã hội.

Khái niệm về thực vật chuyển gen

Muốn tạo một sinh vật biến đổi gen (genetically modified organism-GMO) cần phải có phương pháp thích hợp để đưa DNA ngoại lai (foreign DNA) vào trong tế bào của chúng. Ở vi khuẩn, tế bào được xử lý bằng dung dịch muối calcium chloride. Ở tế bào nấm men, sự tiếp nhận DNA tăng lên khi tế bào tiếp xúc với lithium chloride hoặc lithium acetate. Tuy nhiên, đối với phần lớn sinh vật bậc cao cần phải có các phương pháp khác tinh vi hơn. Chuyển gen ở thực vật đã phát triển cùng với sự phát triển của các kỹ thuật nuôi cấy mô và tế bào thực vật. Nó đã trở thành phương tiện quan trọng để nghiên cứu cơ bản trong sinh học thực vật. Ngoài việc mở ra triển vọng chuyển các gen có ý nghĩa kinh tế vào cây trồng, các kỹ thuật này còn cho phép nghiên cứu cấu trúc và điều khiển hoạt động của gen. Quá trình đưa một DNA ngoại lai vào genome (hệ gen) của một sinh vật được gọi là quá trình biến nạp (transformation). Những cây được biến nạp được gọi là cây biến đổi gen (genetically modified plant-GMP). Ứng dụng công nghệ gen trong công tác giống cây trồng hiện đại có rất nhiều ưu điểm, chẳng hạn như:
  1. Bằng việc biến nạp một hoặc một số gen có thể thu được cây mang một đặc tính mới xác định.
  2. Rào cản về loài không còn có tác dụng, vì không chỉ các gen từ thực vật mà còn từ vi khuẩn, nấm, động vật hoặc con người được chuyển thành công vào thực vật. Về nguyên tắc chỉ thay đổi vùng điều khiển gen, promoter và terminator. Tuy nhiên, trong một số trường hợp đòi hỏi những thay đổi tiếp theo như sự phù hợp codon.
  3. Những đặc điểm không mong muốn của thực vật. Chẳng hạn, sự tổng hợp các chất độc hoặc chất gây dị ứng có thể được loại trừ bằng công nghệ gen.
  4. Thực vật biến đổi gen có thể là lò phản ứng sinh học (bioreactor) sản xuất hiệu quả các protein và các chất cần thiết dùng trong dược phẩm và thực phẩm..
  5. Mở ra khả năng nghiên cứu chức năng của gen trong quá trình phát triển của thực vật và các quá trình sinh học khác. Vì vậy, thực vật biến đổi gen có ý nghĩa trong nghiên cứu cơ bản.
  6. Trong lai tạo giống hiện đại, công nghệ gen giúp làm giảm sự mâu thuẫn giữa kinh tế và môi trường sinh thái. Bằng việc sử dụng cây trồng kháng thuốc diệt cỏ có thể giảm được lượng thuốc bảo vệ thực vật.
Mục đích của nông nghiệp hiện đại không chỉ là tăng năng suất mà còn hướng đến những lĩnh vực quan trọng sau:
  1. Duy trì và mở rộng đa dạng sinh học (biodiversity).
  2. Tăng khả năng kháng (sức khỏe cây trồng và chống chịu các điều kiện bất lợi).
  3. Nâng cao chất lượng sản phẩm.
  4. Cải thiện khả năng tích lũy dinh dưỡng.
  5. Tăng cường tổng hợp các hợp chất có hoạt tính sinh học.
  6. Tạo ra sản phẩm không gây hại môi trường.
Tóm tắt lịch sử phát triển của công nghệ chuyển gen thực vật Lịch sử phát triển công nghệ gen của thực vật chắc chắn có rất nhiều sự kiện quan trọng. Ở đây chỉ nêu lên những mốc có ý nghĩa đặc biệt nhằm làm rõ sự phát triển rất nhanh của lĩnh vực này:
  • Trước hết, vi khuẩn đất Agrobacterium tumefaciens được sử dụng làm phương tiện vận chuyển DNA. Bình thường vi khuẩn này tạo nên khối u ở thực vật. Một phần nhỏ của Ti-plasmid có trong vi khuẩn này, được gọi là T-DNA, được vận chuyển từ Agrobacterium vào cây hai lá mầm. Năm 1980, lần đầu tiên DNA ngoại lai (transposon Tn7) được chuyển vào thực vật nhờ A. tumefaciens, tuy nhiên T-DNA vẫn chưa được thay đổi. Năm 1983, nhiều nhóm nghiên cứu đã biến đổi T-DNA và đưa DNA ngoại lai vào, tạo ra tính kháng một số chất kháng sinh. Ngoài ra, các gen tạo khối u được cắt ra. DNA ngoại lai cùng với phần còn lại được chuyển vào thực vật và được biến nạp. Thành công này nhờ nghiên cứu chính xác con đường lây nhiễm của A. tumefaciens trước đó và khả năng của hệ thống chọn lọc đối với thực vật.
Từ kết quả thành công đầu tiên này số lượng các loài được biến nạp ngày càng tăng. Lúc này có thêm nhiều phương pháp khác để biến đổi gen: - Năm 1984, biến nạp bằng tế bào trần (protoplast) ở ngô được thực hiện. Ở đây thành tế bào được phân giải bằng enzyme, xuất hiện tế bào trần. Nhờ polyethylene glycol (PEG) hoặc xung điện (electroporation) mà DNA được đưa vào tế bào trần. - Năm 1985, lần đầu tiên cây biến đổi gen được mô tả có tính kháng thuốc diệt cỏ. Một năm sau, người ta đã thành công trong việc tạo ra thực vật kháng virus. Năm 1996, các thí nghiệm về cây biến đổi gen đã được phép đưa ra đồng ruộng. - Năm 1987, phương pháp biến nạp phi sinh học được sử dụng. Ở đây tế bào thực vật được bắn phá bằng các hạt vàng hoặc wolfram bọc DNA ngoại lai. Nhờ phương pháp này mà sự biến nạp đã thành công đã ở các cây một lá mầm quan trọng như lúa (1988), ngô (1990) và lúa mỳ (1992). Cũng trong năm 1987, cà chua và thuốc lá kháng côn trùng đã làm cho công nghệ gen đạt được một bước phát triển quan trọng hơn. Một thành công quan trọng khác là đã điều khiển được quá trình chín ở cà chua, sau này có tên là FlavrSaver. Năm 1994, lần đầu tiên cà chua biến đổi gen được bán trên thị trường. - Năm 1989, không những đã thành công trong việc chuyển các gen mã hóa các kháng thể vào thực vật, mà người ta còn tạo nên các sản phẩm gen này như mong muốn. Kết quả này đã mở ra một khả năng hoàn toàn mới mẽ cho việc sản xuất vaccine và cả khả năng chống bệnh ở thực vật. - Năm 1990, thành công trong việc tạo ra cây biến đổi gen bất dục đực, không có khả năng tạo hạt phấn. Loại cây trồng này có ý nghĩa lớn trong việc sản xuất hạt giống. - Từ năm 1991, thành phần carbohydrate của thực vật được biến đổi và năm 1992 là các acid béo. Cùng năm đó, lần đầu tiên thành phần alkaloid ở một loại cà được cải thiện, là một bước quan trọng đối với thực vật trong việc tổng hợp nhóm hợp chất này. Những thực vật này có ý nghĩa lớn đối với việc thu nhận dược liệu. Sau khi thực vật biến đổi gen này xuất hiện, chất nhân tạo phân giải sinh học được tổng hợp. Điều này cho phép chúng ta hy vọng rằng, trong tương lai sẽ có những thực vật có đặc tính mới, được sử dụng như là các bioreactor thực vật để sản xuất “nguyên liệu tái sinh”. - Năm 1994, cà chua Flavr SavrR là cây trồng đầu tiên biến đổi gen và quả của nó được đưa ra thị trường. Năm 1998, trên thế giới đã có 48 giống cây trồng biến đổi gen và sản phẩm được thị trường hóa. Năm 1999, cây lúa biến đổi gen được đưa ra với 7 gen được biến nạp. Đến đầu năm 1999, trên thế giới đã có khoảng 9.000 thí nghiệm đồng ruộng cho phép, trong đó khoảng 1.360 là ở EU. Cuối cùng, là một số nhận xét về việc thị trường hóa cây biến đổi gen trong nông nghiệp. Cho đến năm 1999, diện tích gieo trồng trên thế giới đạt hơn 40 triệu ha. Trong đó 20% là ngô, 50% là đậu tương và 1/3 diện tích bông là ở Mỹ. Ngoài ra có hơn 70% diện tích cải dầu ở Canada được trồng với giống biến đổi gen. Khoảng 90% thực vật biến đổi gen chống chịu thuốc diệt cỏ hoặc sâu bệnh hại. Cần chú ý rằng, ở Mỹ sản phẩm đậu tương có trong hơn 20.000 loại thực phẩm khác nhau. Điều này cho thấy rằng, công nghệ gen đã ảnh hưởng đến sản xuất thực phẩm của chúng ta.

Một số nguyên tắc cơ bản của việc chuyển gen

Một số nguyên tắc sinh học Khi đặt ra mục đích và thực hiện thí nghiệm chuyển gen cần chú ý một số vấn đề sinh học ảnh hưởng đến quá trình chuyển gen như sau: - Không phải toàn bộ tế bào đều thể hiện tính toàn năng (totipotency). - Các cây khác nhau có phản ứng không giống nhau với sự xâm nhập của một gen ngoại lai. - Cây biến nạp chỉ có thể tái sinh từ các tế bào có khả năng tái sinh và khả năng thu nhận gen biến nạp vào genome. - Mô thực vật là hỗn hợp các quần thể tế bào có khả năng khác nhau. Cần xem xét một số vấn đề như: chỉ có một số ít tế bào có khả năng biến nạp và tái sinh cây. Ở các tế bào khác có hai trường hợp có thể xảy ra: một số tế bào nếu được tạo điều kiện phù hợp thì trở nên có khả năng, một số khác hoàn toàn không có khả năng biến nạp và tái sinh cây. - Thành phần của các quần thể tế bào được xác định bởi loài, kiểu gen, từng cơ quan, từng giai đoạn phát triển của mô và cơ quan. - Thành tế bào ngăn cản sự xâm nhập của DNA ngoại lai. Vì thế, cho đến nay chỉ có thể chuyển gen vào tế bào có thành cellulose thông qua Agrobacterium, virus và bắn gen hoặc phải phá bỏ thành tế bào để chuyển gen bằng phương pháp xung điện, siêu âm và vi tiêm. - Khả năng xâm nhập ổn định của gen vào genome không tỷ lệ với sự biểu hiện tạm thời của gen. - Các DNA (trừ virus) khi xâm nhập vào genome của tế bào vật chủ chưa đảm bảo là đã liên kết ổn định với genome. - Các DNA (trừ virus) không chuyển từ tế bào này sang tế bào kia, nó chỉ ở nơi mà nó được đưa vào. - Trong khi đó, DNA của virus khi xâm nhập vào genom cây chủ lại không liên kết với genome mà chuyển từ tế bào này sang tế bào khác ngoại trừ mô phân sinh (meristem). Phản ứng của tế bào với quá trình chuyển gen Mục đích chính của chuyển gen là đưa một đoạn DNA ngoại lai vào genome của tế bào vật chủ có khả năng tái sinh cây và biểu hiện ổn định tính trạng mới. Nếu quá trình biến nạp xảy ra mà tế bào không tái sinh được thành cây, hoặc sự tái sinh diễn ra mà không kèm theo sự biến nạp thì thí nghiệm biến nạp chưa thành công. Ở rất nhiều loài thực vật, điều khó khăn là phải xác định cho được kiểu tế bào nào trong cây có khả năng tiếp nhận sự biến nạp. Hạt phấn hay tế bào noãn sau khi được biến nạp có thể được dùng để tạo ra cây biến nạp hoàn toàn, thông qua quá trình thụ tinh bình thường. Hạt phấn thường được coi là nguyên liệu lý tưởng để gây biến nạp. Trong khi đó, việc biến nạp gen vào hợp tử in vivo hay in vitro lại gặp nhiều khó khăn. Trong trường hợp này, người ta thường phải kết hợp với kỹ thuật cứu phôi. Việc biến nạp gen đối với các tế bào đơn của các mô phức tạp như phôi hay mô phân sinh thường cho ra những cây khảm. Từ nhiều thập kỷ qua người ta đã biết rằng, tính toàn thể của tế bào thực vật đã tạo điều kiện cho sự tái sinh cây hoàn chỉnh in vitro qua quá trình phát sinh cơ quan (hình thành chồi) hay phát sinh phôi. Các chồi bất định hay phôi được hình thành từ các tế bào đơn được hoạt hóa là những bộ phận dễ dàng tiếp nhận sự biến nạp và có khả năng cho những cây biến nạp hoàn chỉnh (không có tính khảm).

Các bước cơ bản của chuyển gen

Từ khi người ta khám phá ra rằng các thí nghiệm chuyển gen có thể thực hiện nhờ một loại vi khuẩn đất Agrobacterium tumefaciens, thì các nhà khoa học tin rằng Agrobacterium có thể chuyển gen vào tất cả các cây trồng. Nhưng sau đó kết quả thực tế cho thấy chuyển gen bằng Agrobacterium không thể thực hiện được trên cây ngũ cốc (một lá mầm) vì thế hàng loạt kỹ thuật chuyển gen khác đã được phát triển đó là các kỹ thuật chuyển gen trực tiếp như bắn gen bằng vi đạn (bombardement/gene gun), vi tiêm (microinjection), xung điện (electroporation), silicon carbide, điện di (electrophoresis), siêu âm (ultrasonic), chuyển gen qua ống phấn (pollen tube)... Đến nay, nhờ cải tiến các vector chuyển gen nên kỹ thuật chuyển bằng A. tumefaciens đã thành công cả ở cây ngũ cốc đặc biệt là lúa. Kỹ thuật này trở nên một kỹ thuật đầy triển vọng đối với cây chuyển gen ở thực vật. Quá trình chuyển gen được thực hiện qua các bước sau :
  1. Xác định gen liên quan đến tính trạng cần quan tâm.
  2. Phân lập gen (PCR hoặc sàng lọc từ thư viện cDNA hoặc từ thư viện genomic DNA).
  3. Gắn gen vào vector biểu hiện (expression vector) để biến nạp.
  4. Biến nạp vào E. coli.
  5. Tách chiết DNA plasmid.
  6. Biến nạp vào mô hoặc tế bào thực vật bằng một trong các phương pháp khác nhau đã kể trên.
  7. Chọn lọc các thể biến nạp trên môi trường chọn lọc.
  8. Tái sinh cây biến nạp.
  9. Phân tích để xác nhận cá thể chuyển gen (PCR hoặc Southern blot) và đánh giá mức độ biểu hiện của chúng (Northern blot, Western blot, ELISA hoặc các thử nghiệm in vivo khác...).
Nguyên liệu để thực hiện sự biến nạp là các tế bào thực vật riêng lẽ, các mô hoặc cây hoàn chỉnh. Cản trở lớn nhất của sự tiếp nhận DNA ở phần lớn sinh vật là thành tế bào. Muốn làm mất thành tế bào thực vật người ta thường sử dụng enzyme và dưới những điều kiện thích hợp người ta có thể tạo ra tế bào trần, tế bào trần tiếp nhận DNA nói chung dễ dàng. Chẳng hạn sử dụng phương pháp xung điện, ở đây tế bào được đặt ở trong một xung điện ngắn, xung điện này có thể làm xuất hiện những lỗ tạm thời ở trên màng tế bào, những phân tử DNA có thể đi vào bên trong tế bào. Sau khi biến nạp người ta tách những enzyme phân giải và để cho tế bào phát triển, thành tế bào mới được tạo nên. Các tế bào biến nạp này được nuôi cấy trên các môi trường nhân tạo thích hợp cùng với các chất kích thích sinh trưởng để tạo nên cây hoàn chỉnh. Sau đó bằng các phương pháp phân tích genome như PCR, Southern blot, Northern blot được thực hiện để tìm ra chính xác những cây biến đổi gen. Bên cạnh các phương pháp biến nạp Agrobacterium hoặc xung điện, hiện nay có hai phương pháp khác cũng thường được sử dụng để đưa DNA vào trong tế bào. Phương pháp thứ nhất là vi tiêm: với một cái pipet rất nhỏ người ta có thể đưa các phân tử DNA trực tiếp vào nhân tế bào mà người ta muốn biến nạp. Phương pháp này đầu tiên chỉ được sử dụng ở tế bào động vật, nhưng sau này người ta đã sử dụng cho tế bào thực vật. Phương pháp thứ hai là bắn vào tế bào các vi đạn (microprojectile), thường bằng vàng hoặc wolfram, được bao bọc bởi DNA. Phương pháp này được gọi là phi sinh học và được sử dụng thành công ở nhiều loại tế bào khác nhau. Ở động-thực vật chuyển gen, sản phẩm cuối cùng thường không phải là tế bào biến nạp, mà là một cơ thể biến nạp hoàn toàn. Phần lớn thực vật được tái sinh dễ dàng bằng nuôi cấy mô tế bào. Tuy nhiên, tái sinh cây một lá mầm như ngũ cốc và các loại cỏ khác cũng gặp một vài khó khăn. Từ một tế bào biến nạp duy nhất người ta có thể tạo ra một cây chuyển gen, trong đó mỗi tế bào mang DNA ngoại lai và tiếp tục chuyển cho thế hệ sau sau khi nở hoa và tạo hạt.

Các hướng nghiên cứu và một số thành tựu trong lĩnh vực tạo thực vật chuyển genCác hướng nghiên cứu

Trong những năm qua, các phương pháp biến nạp gen ở thực vật đã có rất nhiều tiến bộ. Hiện nay, các phòng thí nghiệm công nghệ gen đang bắt tay vào việc cải thiện các đặc điểm di truyền cho một số loài cây trồng có giá trị nhờ các công cụ của sinh học tế bào và sinh học phân tử. Trong một vài trường hợp đặc biệt (đậu tương, lúa, ngô và bông) các phương pháp biến nạp gen bị giới hạn bởi genotype. Một số các cây trồng quan trọng khác, cần thiết cho nhu cầu sử dụng của người dân ở các nước đang phát triển hiện cũng ít được chú ý. Công nghệ di truyền thực vật là một bước ngoặt quyết định. Một số cây trồng quan trọng đã được biến nạp gen; mặc dù một vài vấn đề kỹ thuật vẫn đang còn tồn tại, nhưng chúng đang từng bước được giải quyết. Để có kết quả cần phải thay đổi dần dần sang một phạm vi khác, như là phát hiện và tạo dòng các gen mang các tính trạng đa gen (multigenic traits). Một điều không thể quên là vấn đề nhận thức của xã hội và dự báo nguy cơ tác động xấu đến môi trường do các sản phẩm có nguồn gốc từ công nghệ DNA tái tổ hợp (DNA recombinant technology) mang lại. Hiện nay, công nghệ chuyển gen đang được quan tâm hơn thông qua các quỹ tài trợ của các cơ quan quốc tế như là chương trình Rockefeller Foundation (Mỹ), và vấn đề đang được thảo luận nhiều đó là cần phải xác định một phương thức tốt nhất để chuyển các lợi ích do công nghệ biến nạp gen mang lại đến các nước đang phát triển. Cây biến nạp gen đầu tiên thu được vào năm 1983. Điều này cho phép nhận xét rằng mới chỉ hơn hai thập niên, các công cụ của công nghệ DNA tái tổ hợp và sinh học tế bào đã giúp ích rất nhiều cho các nhà tạo giống thực vật. Việc lựa chọn phương thức sử dụng các cây trồng thu được từ công nghệ DNA tái tổ hợp có thể cung cấp thêm nguồn tài nguyên mới cho công nghiệp và người tiêu dùng, như vậy có thể mở rộng cơ sở kinh tế ở cả các nước công nghiệp lẫn các nước đang phát triển.

Sau đây là một số hướng nghiên cứu chính trong công nghệ chuyển gen ở thực vật.

Cây trồng chuyển gen kháng các nấm gây bệnh

Nấm bệnh là những tác nhân gây hại cây trồng rất nặng, nhất là ở các nước nhiệt đới có độ ẩm cao. Các enzyme làm thoái hóa các thành phần chính của vỏ tế bào nấm chitin và β-1,3 glucan là loại đang được chú ý. Khi chuyển gen chitinase vào cây thuốc lá đã tăng hoạt tính kháng nấm gây hại. Sự biểu hiện đồng thời của cả hai gen chitinase và glucanase trong thuốc lá làm cho cây có tính kháng nấm gây hại cao hơn cây có một gen độc lập. Tương tự, cà chua cho tính kháng nấm Fusarium cao hơn hẳn sau khi được chuyển cả hai gen nói trên. Protein ức chế ribosome (ribosomal inhibition protein-RIP) cũng biểu hiện tính kháng nấm tốt. Cây thuốc lá cho tính kháng nấm rất cao, khi cây được chuyển giao đồng thời gen RIP và chitinase.

Cây trồng chuyển gen kháng các vi khuẩn gây bệnh

Đối với bệnh vi khuẩn, hướng nghiên cứu tạo giống mới bằng công nghệ gen chỉ mới bắt đầu. Về cơ bản có ba hướng : - Dùng gen mã hóa enzyme làm thoái hóa thành tế bào vi khuẩn. Chẳng hạn, gen lysozyme từ các nguồn tế bào động vật hoặc từ thực khuẩn thể T4 (bacteriophage T4) đưa vào cây thuốc lá và khoai tây. Các gen này biểu hiện hoạt tính lysozyme mạnh và các tế bào có khả năng phòng trừ vi khuẩn Erwina carotovora rất tốt. - Gen mã hóa α-thionin-cystein được chuyển giao sang cây thuốc lá cũng phòng ngừa được vi khuẩn Pseudomonas syringae. - Chuyển gen sản xuất protein làm giảm độc tố của vi khuẩn là hướng có nhiều hứa hẹn. Gen này chủ yếu là gen sản xuất các loại enzyme phân hủy độc tố của vi khuẩn, do vậy vô hiệu hóa tác hại của chúng.

Cây trồng chuyển gen kháng virus gây bệnh

Các virus gây ra những thiệt hại đáng kể trong hầu hết các cây trồng lương thực và cây cho sợi trên phạm vi thế giới. Phương pháp chủ yếu để khắc phục tình trạng trên là khai thác tính kháng xuất phát từ các tác nhân gây bệnh. Chẳng hạn, sử dụng các trình tự có nguồn gốc từ virus được biểu hiện trong các cây chuyển gen để cung cấp tính kháng đối với các virus thực vật. Hướng này dựa trên cơ sở các nghiên cứu về sự gây nhiễm (inoculation) hay xâm nhiễm (infection) ở thực vật, khởi đầu với các chủng virus nhẹ tạo ra phản ứng bảo vệ chống lại sự gây nhiễm tiếp theo với cùng loại virus hoặc các virus liên quan gần gũi.

Cây trồng chuyển gen kháng côn trùng phá hoại

Sử dụng hóa chất để phòng trừ sâu bọ côn trùng vừa đắt tiền vừa tác động xấu đến môi trường. Các cây trồng như bông, ngô và khoai tây chuyển gen đang được sản xuất thương mại biểu hiện độc tố của Bacillus thuringensis (Bt) để tạo ra tính kháng đối với các côn trùng loại nhai-nghiền (chewing insects). Vi khuẩn B. thuringensis tổng hợp các protein δ-endotoxin tinh thể được mã hóa bởi các gen Cry. Khi côn trùng ăn vào bụng, các prototoxins bị đứt gãy trong dạ dày kiềm của côn trùng để tạo thành độc tố hoạt động. Các liên kết này tạo ra các receptor đặc trưng trong các tế bào biểu mô ruột làm thành các lỗ chân lông và cuối cùng là gây chết côn trùng.

Cây trồng chuyển gen cải tiến các protein hạt

Hàm lượng protein và thành phần amino acid thay đổi rất nhiều trong thực phẩm thực vật. Ngoài protein thì các amino acid không thay thế, phải được tiếp nhận cùng thức ăn vì con người và động vật không tự tổng hợp được. Đặc biệt, trong thức ăn gia súc chủ yếu là đậu tương và ngô, phải bổ sung các amino acid được sản xuất bằng phương pháp lên men như lysine, methionine, threonine và tryptophan. Trong tương lai, không cần thiết phải bổ sung các amino acid này theo phương thức như vậy. Phương thức có khả năng hơn là tạo dòng các gen ở cây đậu tương hoặc ngô mà các gen này mã hóa cho protein giàu những amino acid này. Người ta đã đưa gen mã hóa cho một loại protein chứa các amino acid có lưu huỳnh cao bất thường vào cây đậu lupin với mục đích biểu hiện ở hạt. Kết quả là tăng 100% hàm lượng protein trong hạt. Hạt này được dùng để nuôi cừu, tăng trọng lượng 7% và sản lượng lông tăng 8% so với cừu nuôi bằng loại hạt bình thường. Thành công này thúc đẩy các nhà nghiên cứu đưa gen này vào biểu hiện ở lá cây cỏ, nhằm cải tiến cân bằng amino acid không thay thế ở dạ cỏ.

Cây trồng chuyển gen sản xuất những loại protein mới

Thực ra việc sản xuất protein trong thực vật dễ dàng, nhưng tinh sạch protein này từ mô thực vật là khó khăn và trước hết là giá thành cao. Vì vậy, người ta hy vọng vào một phương pháp mới, được giới thiệu bởi Raskin và cs (1999). Những gen mã hóa cho protein được gắn với một promoter và đảm bảo cho protein chỉ được tổng hợp ở rễ. Tiếp theo protein tạo thành có một hệ thống tín hiệu, đảm bảo cho nó được vận chuyển vào một vị trí xác định trong tế bào. Trong trường hợp đặc biệt protein được vận chuyển vào mạng lưới nội chất (endoplasmatic reticulum: ER). Protein đi vào ER có thể được thải ra bên ngoài và chỉ ở vùng rễ, vì promoter chỉ đặc hiệu cho vùng này. Người ta dùng một số dung dịch muối để tách protein một cách dễ dàng và với giá thành hợp lý. Một ví dụ điển hình của hướng ứng dụng này: Người ta đã tạo ra được hai loại thuốc lá chuyển gen, mỗi loại có khả năng sản xuất một trong hai mạch immunoglobin nhẹ và nặng. Thế hệ con sinh ra từ sự lai hai loại cây trên biểu hiện được một kháng thể hoạt động gồm hai loại mạch với hàm lượng cao (1,3% tổng protein của lá) và có tất cả các đặc tính của một kháng thể đơn dòng sản sinh từ hybridoma. Thaumatin là những protein được chiết xuất từ thịt quả của cây Thaumatococus danielle, có độ ngọt gấp 1.000 lần đường saccharose. Người ta đã thành công trong việc chuyển một gen mã hóa cho thaumatin (thaumatin II) vào cây khoai tây, tạo một cây khoai tây có lá, thân rễ, củ đều ngọt. Kết quả này mở ra một triển vọng rất lớn đối với cây ăn quả ngọt.

Cây trồng chuyển gen mang tính bất dục đực

Các cây hoa màu đạt năng suất cao hiện nay đều được trồng từ hạt lai qua một quá trình chọn lọc khắt khe. Các hạt này có ưu thế lai cao vì là kết quả của các quá trình lai xa. Ở những cây tự thụ phấn như ngô, trước kia người ta rất tốn công lao động để loại bỏ cờ bắp (cụm hoa đực) nhằm tránh hiện tượng tự thụ phấn. Tuy nhiên, công trình thử nghiệm mới đã chuyển một phức hợp gồm gen rolC của A. tumefaciens và promoter CaMV 35S (cauliflower mosaic virus: virus gây bệnh khảm ở súp-lơ) vào cây thuốc lá và đã thu được cây chuyển gen bất thụ. Kết quả này đang được nghiên cứu và áp dụng trên những loại cây khác.

Thực vật biến đổi gen để sản xuất các acid béo thiết yếu

Như chúng ta biết, nguồn cung cấp chủ yếu về các acid béo thiết yếu là dầu cá và tài nguyên hải sản đang bị cạn kiệt và sự gia tăng độc tố ở các loại hải sản khác nhau cũng đang trở thành một nguy cơ tiềm tàng. Do vậy, việc nghiên cứu sản xuất các acid béo thiết yếu có tiềm năng to lớn trong việc phát triển một nguồn cung cấp thay thế. Gần đây, các nhà nghiên cứu của Đại học Bristol (Anh) đã thông báo về việc sản xuất hai chuỗi dài acid béo không sản sinh ra cholesterol với số lượng lớn ở thực vật bậc cao. Việc sản xuất ra các loại dầu thiết yếu ở cây Arabidopsis thaliana cho thấy thực vật chuyển gen có thể trở thành nguồn cung cấp các acid béo quan trọng dùng trong ăn uống mà chúng ta thường chỉ nhận được từ cá. Người ta cũng đã áp dụng thành công kỹ thuật gen đối với cây Arabidopsis thaliana để tạo ra các acid béo thiết yếu khác như arachidonic acid và eiconsapentaenoic acid.

Phát triển hệ thống marker chọn lọc

Việc sử dụng các marker kháng kháng sinh hoặc chống chịu thuốc diệt cỏ cho cây chuyển gen thường là mối lo ngại chính của công chúng và là lý do phản đối công nghệ này. Các nhà khoa học tại Trung tâm Khoa học Thực vật Umeo (Thụy Điển) đã xây dựng một hệ thống marker ưu việt để xác định cây trồng biến đổi gen mà không phụ thuộc vào các marker truyền thống bằng cách phát triển một biện pháp dựa trên gen dao1, gen này mã hóa D amino acid oxidase (DAAO). DAAO là tác nhân làm mất quá trình tạo nhóm amin oxy hóa của một dãy D-amino acid, và phương thức chọn lọc này dựa trên mức độ độc tính của các D-amino acid khác nhau và sự trao đổi của chúng đối với thực vật. Mặc dù nghiên cứu này còn mới và được thực hiện trên cây Arabidopsis thaliana, nhưng người ta tin tưởng rằng phương pháp chọn lọc này sẽ có thể sử dụng trong các loại cây nông nghiệp quan trọng khác.

Làm sạch đất ô nhiễm

Cây mù tạt Ấn Độ chuyển gen (GM) đã hút sạch lượng selen dư thừa trên một cánh đồng tại California. Đây là cuộc thử nghiệm đầu tiên trên thực địa đối với một số loại cây GM chống ô nhiễm. Selen là một nguyên tố hóa học, gây độc đối với thực vật nếu hàm lượng của chúng quá cao trong đất. Đất canh tác tại một số vùng của bang California được tưới tiêu mạnh và nước hòa tan selen có trong đá phiến sét. Khi nước bốc hơi trên mặt đất, senlen sẽ tích tụ ngày càng nhiều. Cây mù tạt Ấn Độ (Brassica juncea) vốn có khả năng kháng và hấp thụ selen qua rễ. Tuy nhiên, Terry và cs (Đại học California) đã thúc đẩy thêm khả năng trên của cây mù tạt bằng cách bổ sung một số gen tạo enzyme đói selen. Kết quả là loại thực vật GM này có thể hấp thụ selen cao gấp 4,3 lần so với mù tạt Ấn Độ dạng hoang dại, và chúng được thu hoạch 45 ngày sau khi trồng. Cuộc thử nghiệm thực địa nói trên đã được tiến hành cẩn thận để đảm bảo không có họ hàng nào của cây mù tạt Ấn Độ sinh trưởng ở xung quanh. Hoa mù tạt GM cũng được hái ngay khi chúng xuất hiện. Mù tạt chuyển gen sẽ được dùng làm thức ăn cho trâu bò thiếu selen trong bữa ăn. Hiện nay việc xử lý đất ô nhiễm vẫn mang tính thô sơ, chủ yếu là đào đất và chôn nó ở một nơi khác hoặc rửa đất. Cả hai phương pháp đều tốn kém, làm giảm chất lượng đất. Việc sử dụng thực vật để loại bỏ chất ô nhiễm khỏi đất ít tốn kém hơn song có thể mất nhiều năm. Chẳng hạn, cây dương xỉ Trung Quốc (Pteris vittata) đã được sử dụng để hút thạch tín khỏi đất. Nhưng dùng cây chuyển gen có thể giúp tăng tốc tiến trình dọn ô nhiễm này. Tuy nhiên, khả năng cây GM sẽ lai với các loại hoa màu khác là một điều đáng lo ngại. Theo Rugh (Đại học Michigan) nếu chuyển một gen hấp thụ nhiều kim loại vào cây dùng để xử lý ô nhiễm, thì chúng ta phải đảm bảo rằng gen đó không xâm nhập vào hoa màu. Nếu không, hoa màu cũng sẽ hút nhiều kim loại, ảnh hưởng tới sức khỏe người tiêu dùng.

Làm thức ăn chăn nuôi

Một thế hệ cây trồng chuyển gen mới, được thiết kế đặc biệt cho ngành chăn nuôi đang được phát triển. Những loại cây trồng này được thiết kế với những thay đổi quan trọng về hàm lượng các thành phần chính (ví dụ: protein và amino acid) hay các thành phần thứ yếu (ví dụ: các loại vitamin và khoáng chất). Vì những loại cây trồng chuyển gen này được dùng với mục đích làm thức ăn chăn nuôi nên sẽ khác với các loại cây trồng bình thường, tiến trình chuẩn y các loại cây trồng này sẽ cần có thêm những đánh giá về sự an toàn của chúng khi để con người và vật nuôi tiêu dùng. Các sản phẩm tiềm tàng bao gồm các loại đậu tương và ngô chuyển gen, có hàm lượng dầu cao hơn cung cấp nhiều năng lượng hơn cho bò, lợn và gia cầm. Các nhà nghiên cứu cũng tạo ra loại đậu tương và ngô có hàm lượng các loại amino acid không thay thế cao hơn. Ngoài ra, các nghiên cứu khác cũng đang được tiến hành nhằm làm tăng hàm lượng phosphore trong thức ăn chăn nuôi.

Nguồn tham khảo:

Trần Quốc Dung, VOER. Share This: Facebook Twitter Google+ Pinterest Linkedin Whatsapp chuyen gene

Không có nhận xét nào:

Đăng nhận xét

Bài đăng Mới hơn Bài đăng Cũ hơn Trang chủ Đăng ký: Đăng Nhận xét (Atom)

CHÚC BẠN MỘT NGÀY TỐT LÀNH!

SBC Scientific

Recent

Popular

  • Tái bản DNA Tái bản DNA I. Chứng minh tái bản DNA theo cơ chế bán bảo thủ 1. Cơ chế tái bản bán bảo thủ 1.1. Cơ chế tái bản ở prokaryote Đặc điểm cơ bả...
  • Phiên mã Phiên mã Phiên mã là quá trình tổng hợp RNA từ khuôn mẫu DNA. Quá trình này về phương diện hóa học và enzyme rất giống với quá trình tái bản DNA...
  • Công nghệ DNA tái tổ hợp Công nghệ DNA tái tổ hợp I. Mở đầu Vào năm 1973, một nhóm các nhà khoa học đã tạo ra cơ thể sinh vật đầu tiên với các phân tử DNA tái tổ hợp. Theo đó, Cohen...
  • Điều hòa biểu hiện gen Điều hòa biểu hiện gen Như chúng ta đã biết ba quá trình thiết yếu cho sự tồn tại của tế bào, đó là: tái bản, phiên mã và dịch mã. Tuy nhiên, tế bào không t...
  • Dịch mã Dịch mã Dịch mã là quá trình các thông tin di truyền chứa trong các trình tự nucleotide của mRNA được sử dụng để tạo ra các chuỗi amino aci...

Comments

Tags

chuyen gene (8) di truyen (40) dien di (1) PCR (4) sinh hoa (13)

Lưu trữ

Lưu trữ tháng 6 (11) tháng 5 (24) tháng 4 (3) tháng 3 (9) tháng 2 (2) tháng 1 (1) tháng 12 (14) Designed with by SBC Scientific | Powered By SBC Scientific Liên hệ

Từ khóa » Nguyên Lý Chuyển Gen