Công Thức Tính Nhanh Cực Trị Hàm Bậc 3 - TopLoigiai
Có thể bạn quan tâm
Cực trị của hàm số là gì?
Cho hàm số y=f(x) liên tục và xác định trên khoảng (a;b) và điểm x0∈(a;b)
Hàm số f(x) đạt cực đại tại x0 nếu tồn tại số h>0 sao cho f(x)<f(x0) với mọi x∈(x0−h;x0+h) và x≠x0
Hàm số f(x) đạt cực tiểu tại x0 nếu tồn tại số h>0 sao cho f(x)>f(x0) với mọi x∈(x0−h;x0+h) và x≠x0
Định lý:
Cực trị của hàm số bậc 3 là gì?
Cho hàm số bậc 3 y=f(x)=ax3+bx2+cx+d
Đạo hàm y′=f′(x)=3ax2+2bx+c
Hàm số f(x) có cực trị ⇔f(x) có cực đại và cực tiểu
⇔f′(x)=0 có hai nghiệm phân biệt ⇔Δ‘=b2−3ac>0
Hàm số f(x) không có cực trị ⇔Δ‘=b2−3ac≤0
Bài tập về cực trị hàm đa thức bậc 3
Dạng 1: Tìm điểm cực trị hàm số bậc 3
Đây là dạng bài cơ bản nhất, chỉ cần sử dụng Định lý ở mục trên là có thể tìm được cực đại, cực tiểu của hàm số.
Ví dụ:
Tìm cực trị của hàm số : f(x)=x3−3x2−2
Cách giải:
Tập xác định D=R
Ta có :
f′(x)=3x2−6x=3x(x−2)
Mặt khác :
f′′(x)=6x−6
⇒f′′(0)=−6<0⇒ hàm số đạt cực đại tại điểm (0;−2)
f′′(2)=6>0⇒ hàm số đạt cực đại tại điểm (2;−6)
Dạng 2: Tìm m để hàm số bậc 3 có 2 cực trị
Bài toán: Tìm m để hàm số y=f(x;m)=ax3+bx2+cx+d có 2 điểm cực trị với a,b,c,d là các hệ chứa m
Cách làm:
Bước 1: Tập xác định D=R. Tính đạo hàm y′=3ax2+2bx+c
Bước 2: Hàm số có 2 cực trị ⇔Δ‘=b2−3ac>0
Bước 3: Giải bất phương trình trên, tìm ra điều kiện của m
Ví dụ:
Tìm m đề hàm số f(x)=y=2x3+3(m−1)x2+6(m−2)x–1 có hai điểm cực trị
Cách giải:
Xét y=2x3+3(m−1)x2+6(m−2)x–1 có tập xác định D=R
Ta có :
y′=6x2+6(m−1)x+6(m−2)
Để hàm số có hai cực trị thì y′=0 có hai nghiệm phân biệt
⇔x2+(m−1)x+(m−2)=0 có hai nghiệm phân biệt
⇔Δ=(m−1)2−4(m−2)>0
⇔m2−6m+9=(m−3)2>0
⇔m≠3
Dạng 3: Tìm m để hai cực trị thỏa mãn điều kiện
Bài toán: Tìm m để hàm số y=f(x;m)=ax3+bx2+cx+d có 2 điểm cực trị x1;x2 thỏa mãn điều kiện K với a,b,c,d là các hệ chứa m
Cách làm:
Bước 1: Tập xác định D=R. Tính đạo hàm y′= 3ax2+2bx+c
Bước 2: Hàm số có 2 cực trị ⇔Δ‘=b2−3ac>0. Giải bất phương trình này tìm được m∈D1
Bước 3: Gọi x1;x2 là hai nghiệm của phương trình y′=0. Theo Vi-ét ta có :
Bước 4: Biến đổi điều kiện yêu cầu của đề bài về dạng S và P. Từ đó giải ra tìm được m∈D2
Bước 5: Kết luận các giá trị của m thỏa mãn m=D1∩D2
Ví dụ:
Cho hàm số y=4x3+mx2−3x. Tìm m để hàm số đã cho có hai điểm cực trị x1;x2 thỏa mãn x1=−4x2
Cách giải:
Tập xác định D=R
Đạo hàm : y′=12x2+2mx−3
Để hàm số có hai cực trị thì phương trình y′=0 có hai nghiệm phân biệt
⇔Δ′=m2+36>0
Điều này luôn đúng với mọi m∈R
Vậy y luôn có hai điểm cực trị có hoành độ x1;x2 thỏa mãn
Công thức tính nhanh cực trị hàm bậc 3
Đây là một số công thức giúp chúng ta có thể giải quyết các bài toán trắc nghiệm một cách nhanh chóng mà không cần phải tính toán phức tạp.
Cho hàm số y = ax3+bx2+cx+d có hai điểm cực trị phân biệt là A,B . Khi đó:
Phương trình đường thẳng AB :
Bài tập ví dụBài 1: cho hàm số y = x3 – 2(m + 1)x2 + (m2 – 3m + 2)x + 4. Tìm m để hàm số có cực đại, cực tiểu và 2 cực trị này nằm về hai phía của trục tung.
Lời giải
Tập xác định RTa có y’ = 3x2 – 2(m + 1)x + (m2 – 3m + 2)Để hàm số có điểm cực đại, cực tiểu nằm về hai phía của trục tung thì phương trình y’ = 0 phải có 1 nghiệm phân biệt
Bài 2: Cho hàm số y = (m + 2)x3 + 3x2 + mx -5 với m là tham số. Tìm giá trị của m để các cực trị có hoành độ là số dương.
Lời giải
Tập xác đinh RĐể các cực trị của hàm số có hoành đồ là số dương thì phương trình y’ = 0 có 2 nghiệm phân biệtTa có y’ = 3(m + 2)x2 + 6x + m
Vậy với -3 < m< -2 thì hàm số đã cho có điểm cực trị có hoành độ là dương
Bài 3: Cho hàm số y = -x3 + 3x2 + 3(m2 – 1)x – 3m2 – 1 (m là tham số thực). Tìm m để hàm số có cực đại, cực tiểu và các điểm cực đại, cực tiểu này cách đều gốc tọa độ O.
Lời giải
Ta có đạo hàm y’ = – 3x2 + 6x + 3(m2 – 1),y’ = 0 ⇔ – 3x2 +6x + 3(m2 – 1) = 0 (1)Để hàm số có cực trị ⇔ y’ = 0 có 2 nghiệm phân biệt⇔Δ’= m2 > 0 ⇔ m ≠ 0Khi đó ta có tọa độ hai điểm cực trị là A(1 – m, – 2 – m2) và B(1+m ; -2 + 2m2)Theo giả thiết đề bài 2 điểm cực trị này cách đều gốc tọa độ ta có⇔ OA = OB⇔ (1 – m)2+ (-2 – 2m2)2 = (1+ m)2 + (2 – 2m2)2⇔4m3 = m⇔ m = ± ½Vậy với m = ± ½ thì hàm số có cực đại và cực tiểu thỏa mãn hai điểm này cách đều gốc tọa độ O.
Từ khóa » Các Bài Tập Về Cực Trị Của Hàm Bậc 3
-
166 Bài Toán Cực Trị Hàm Số Bậc Ba Trong Các đề Thi Thử THPT Môn ...
-
Cực Trị Hàm Bậc Ba
-
Chuyên đề Cực Trị Hàm Số Bậc 3 Và Công Thức Tính Nhanh Cực Trị
-
Cực Trị Hàm Số Bậc 3 ? Công Thức, điều Kiện, Bài Tập để Tìm Cực Trị ...
-
Cực Trị Của Hàm Số Bậc 3
-
Cực Trị Hàm Số Bậc 3 (có Lời Giải Chi Tiết)
-
Các Dạng Bài Tập Tìm Cực Trị Của Hàm Số Bậc 3 Thường Gặp
-
Bài Tập Trắc Nghiệm Cực Trị Của Hàm Số Bậc 3 (Có đáp án)
-
Phương Pháp Tìm Cực Trị Của Hàm Số Bậc 3 - Vật Lí Phổ Thông
-
Cách Giải Mọi Dạng Bài Cực Trị Của Hàm Số Bậc 3 - Tự Học 365
-
Các Dạng Bài Tập Cực Trị Của Hàm Số Chọn Lọc, Có đáp án - Toán Lớp 12
-
Các Bài Toán Về Cực Trị Hàm Bậc 3 - Blog Của Thư
-
23 Công Thức Giải Nhanh Bài Tập Cực Trị Của Hàm Số Lớp 12 CCBOOK
-
TOÁN 12 | Chuyên đề: Cực Trị Hàm Số Bậc 3 (có Tham Số) (Phần 1)