Đa Thức Nội Suy Lagrange - Vườn Toán
Có thể bạn quan tâm
Trang
- Trang nhà
- Kỹ năng mềm
- Giới thiệu
Đa thức nội suy Lagrange
Hôm nay chúng ta sẽ tiếp tục học về công thức nội suy cho đa thức. Kỳ trước, chúng ta đã học về công thức nội suy Newton, hôm nay chúng ta học thêm một công thức nội suy khác gọi là công thức nội suy Lagrange. Chúng ta sẽ dùng ví dụ sau đây $$P(x) = 2x^2 - 3x + 3$$ Chúng ta thấy rằng $P(x)$ là một đa thức bậc hai và chúng ta có thể tính được $$P(1) = 2, ~~P(2) = 5, ~~P(3) = 12.$$ Bài toán đa thức nội suy là bài toán ngược, tức là, cho biết $P(1) = 2$, $P(2) = 5$, và $P(3) = 12$, tìm lại đa thức $P(x)$. Ở một bài viết trước, tôi có chia xẻ một kinh nghiệm của mình khi làm toán, đó là khi đối diện với một bài toán mà chúng ta không biết phải làm như thế nào, thì việc đầu tiên chúng ta có thể làm là xem xét các trường hợp đặc biệt của bài toán. Chúng ta thử xem với những trường hợp đặc biệt đó thì bài toán có giải quyết được không. Đôi khi bằng cách giải các trường hợp đặc biệt mà chúng ta tìm ra được những kỹ thuật có thể dùng để giải quyết bài toán trong trường hợp tổng quát. Đối với một đa thức $f(x)$ bất kỳ, nếu $f(u) = 0$ thì $u$ là một nghiệm của đa thức, cho nên $f(x)$ sẽ chia hết cho $x-u$, và chúng ta có thể viết được $f(x)$ dưới dạng $$f(x) = (x-u)g(x).$$ Sử dụng tính chất này, chúng ta sẽ làm một bài toán đơn giản sau đây. Tìm đa thức $A(x)$ sao cho $$A(1) = 1, ~~A(2) = 0, ~~A(3) = 0.$$ Rõ ràng đa thức $A(x)$ sẽ có dạng $$A(x) = a (x-2)(x-3)$$ Hai điều kiện $A(2) = 0$, $A(3) = 0$ đã thoã mãn. Vậy điều kiện $A(1) = 1$ thì sao? Chúng ta thay $x=1$ vào thì có $$A(1) = a (1-2)(1-3) = 1$$ Vậy chúng ta có thể chọn $$a = \frac{1}{(1-2)(1-3)},$$ và như vậy chúng ta đã tìm được đa thức $$A(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)}$$ thõa mãn điều kiện $$A(1) = 1, ~~A(2) = 0, ~~A(3) = 0.$$ Tương tự, chúng ta có thể tìm được đa thức $B(x)$ thõa mãn điều kiện $$B(1) = 0, ~~B(2) = 1, ~~B(3) = 0,$$ đó chính là $$B(x) = \frac{(x-1)(x-3)}{(2-1)(2-3)}.$$ Và đa thức $C(x)$ thõa mãn điều kiện $$C(1) = 0, ~~C(2) = 0, ~~C(3) = 1$$ chính là $$C(x) = \frac{(x-1)(x-2)}{(3-1)(3-2)}.$$ Ở trên, chúng ta đã giải các trường hợp đặc biệt và tìm ra được các đa thức $A(x)$, $B(x)$ và $C(x)$ thõa mãn điều kiện $$A(1) = 1, ~~A(2) = 0, ~~A(3) = 0$$ $$B(1) = 0, ~~B(2) = 1, ~~B(3) = 0$$ $$C(1) = 0, ~~C(2) = 0, ~~C(3) = 1$$ Bây giờ, đối với bài toán tổng quát, tìm $P(x)$ sao cho $P(1) = 2$, $P(2) = 5$, $P(3) = 12$ thì sao? Các bạn đã nhìn thấy mối tương quan giữa đa thức $P(x)$ với các đa thức $A(x)$, $B(x)$, $C(x)$ chưa? Rõ ràng nếu chúng ta lấy $$P(x) = 2 ~A(x) + 5 ~B(x) + 12 ~C(x)$$ thì $$P(1) = 2 ~A(1) + 5 ~B(1) + 12 ~C(1) = 2 + 0 + 0 = 2,$$ $$P(2) = 2 ~A(2) + 5 ~B(2) + 12 ~C(2) = 0 + 5 + 0 = 5,$$ $$P(3) = 2 ~A(3) + 5 ~B(3) + 12 ~C(3) = 0 + 0 + 12 = 12.$$ Vậy chúng ta đã tìm ra được đa thức $P(x)$, đó chính là $$P(x) = 2 ~A(x) + 5 ~B(x) + 12 ~C(x)$$ $$ = 2 \frac{(x-2)(x-3)}{(1-2)(1-3)} + 5 \frac{(x-1)(x-3)}{(2-1)(2-3)} + 12 \frac{(x-1)(x-2)}{(3-1)(3-2)}$$ $$ = (x-2)(x-3) - 5(x-1)(x-3)+ 6(x-1)(x-2) = 2x^2 - 3x + 3$$ Các bạn thấy chưa, chính nhờ việc giải bài toán đối với các trường hợp đơn giản là $A(x)$, $B(x)$, $C(x)$, mà chúng ta đã tìm ra được lời giải cho bài toán tổng quát $P(x)$! Bây giờ chúng ta đã sẵn sàng để phát biểu công thức nội suy Lagrange. Nếu $x_1$, $x_2$, $\dots$, $x_n$, $x_{n+1}$ là $n+1$ số thực khác nhau, và $y_1$, $y_2$, $\dots$, $y_n$, $y_{n+1}$ là $n+1$ số thực bất kỳ. Chúng ta sẽ tìm đa thức $P(x)$ có bậc bé thua hoặc bằng $n$ thõa mãn điều kiện $$P(x_1) = y_1, ~~P(x_2) = y_2, \dots, ~~P(x_n) = y_n, ~~P(x_{n+1})=y_{n+1}.$$ Như ở trên, chúng ta thấy rằng đa thức $P(x)$ có thể được xây dựng từ các đa thức $P_1(x)$, $P_2(x)$, $\dots$, $P_n(x)$, $P_{n+1}(x)$ như sau $$P(x) = y_1 ~P_1(x) + y_2 ~P_2(x) + \dots + y_n ~P_n(x) + y_{n+1} ~P_{n+1}(x),$$ trong đó, các đa thức $P_1(x)$, $\dots$, $P_{n+1}(x)$ được xác định như sau. $$P_1(x) = \frac{(x-x_2)(x-x_3) \dots (x-x_n)(x-x_{n+1})}{(x_1-x_2)(x_1-x_3) \dots (x_1-x_n)(x_1-x_{n+1})}$$ $$P_2(x) = \frac{(x-x_1)(x-x_3) \dots (x-x_n)(x-x_{n+1})}{(x_2-x_1)(x_2-x_3) \dots (x_2-x_n)(x_2-x_{n+1})}$$ $$\dots$$ $$P_n(x) = \frac{(x-x_1)(x-x_2) \dots (x-x_{n-1})(x-x_{n+1})}{(x_n-x_1)(x_n-x_2) \dots (x_n-x_{n-1})(x_n-x_{n+1})}$$ $$P_{n+1}(x) = \frac{(x-x_1)(x-x_2) \dots (x-x_{n-1})(x-x_n)}{(x_{n+1}-x_1)(x_{n+1}-x_2) \dots (x_{n+1}-x_{n-1})(x_{n+1}-x_{n})}$$ Các đa thức này thõa mãn điều kiện $$P_1(x_1) = 1, ~~P_1(x_2) = 0, ~~P_1(x_3) = 0, \dots, ~~P_1(x_n) = 0, ~~P_1(x_{n+1}) = 0.$$ $$P_2(x_1) = 0, ~~P_2(x_2) = 1, ~~P_2(x_3) = 0, \dots, ~~P_2(x_n) = 0, ~~P_2(x_{n+1}) = 0.$$ $$\dots$$ $$P_n(x_1) = 0, ~~P_n(x_2) = 0, ~~P_n(x_3) = 0, \dots, ~~P_n(x_{n}) = 1, ~~P_n(x_{n+1}) = 0.$$ $$P_{n+1}(x_1) = 0, ~~P_{n+1}(x_2) = 0, ~~P_{n+1}(x_3) = 0, \dots, ~~P_{n+1}(x_n) = 0, ~~P_{n+1}(x_{n+1}) = 1.$$ Tóm lại chúng ta có $$P(x) = y_1 \frac{(x-x_2)(x-x_3) \dots (x-x_n)(x-x_{n+1})}{(x_1-x_2)(x_1-x_3) \dots (x_1-x_n)(x_1-x_{n+1})} + y_2 \frac{(x-x_1)(x-x_3) \dots (x-x_n)(x-x_{n+1})}{(x_2-x_1)(x_2-x_3) \dots (x_2-x_n)(x_2-x_{n+1})}$$ $$ + \dots + y_n \frac{(x-x_1)(x-x_2) \dots (x-x_{n-1})(x-x_{n+1})}{(x_n-x_1)(x_n-x_2) \dots (x_n-x_{n-1})(x_n-x_{n+1})} + y_{n+1} \frac{(x-x_1)(x-x_2) \dots (x-x_{n-1})(x-x_n)}{(x_{n+1}-x_1)(x_{n+1}-x_2) \dots (x_{n+1}-x_{n-1})(x_{n+1}-x_{n})},$$ Hay viết ngắn gọn lại như sau $$P(x) = \sum_{i=1}^{n+1} y_i \prod_{j \neq i}\frac{x-x_j}{x_i-x_j}$$ Đây chính là công thức nội suy Lagrange. Chúng ta xem xét một vài ví dụ. Ví dụ 1. Tìm đa thức $P(x)$ có bậc bé thua hoặc bằng $4$ sao cho $$P(1) = 1, ~~P(2) = 1, ~~P(3) = 2, ~~P(4) = 3, ~~P(5) = 5$$ Chúng ta dùng công thức nội suy Lagrange $$P(x) = \frac{(x-2)(x-3)(x-4)(x-5)}{(1-2)(1-3)(1-4)(1-5)} + \frac{(x-1)(x-3)(x-4)(x-5)}{(2-1)(2-3)(2-4)(2-5)}$$ $$+ 2 \frac{(x-1)(x-2)(x-4)(x-5)}{(3-1)(3-2)(3-4)(3-5)} + 3 \frac{(x-1)(x-2)(x-3)(x-5)}{(4-1)(4-2)(4-3)(4-5)} + 5 \frac{(x-1)(x-2)(x-3)(x-4)}{(5-1)(5-2)(5-3)(5-4)}$$ Ví dụ 2. Tìm đa thức $P(x)$ có bậc bé thua hoặc bằng $4$ sao cho $$P(1) = 1, ~~P(2) = 4, ~~P(3) = 9, ~~P(4) = 16, ~~P(5) = 25$$ Dùng công thức nội suy Lagrange thì $$P(x) = \frac{(x-2)(x-3)(x-4)(x-5)}{(1-2)(1-3)(1-4)(1-5)} + 4 \frac{(x-1)(x-3)(x-4)(x-5)}{(2-1)(2-3)(2-4)(2-5)}$$ $$+ 9 \frac{(x-1)(x-2)(x-4)(x-5)}{(3-1)(3-2)(3-4)(3-5)} + 16 \frac{(x-1)(x-2)(x-3)(x-5)}{(4-1)(4-2)(4-3)(4-5)} + 25 \frac{(x-1)(x-2)(x-3)(x-4)}{(5-1)(5-2)(5-3)(5-4)} $$ Khai triển các biểu thức này ra, các bạn có thể kiểm chứng rằng $P(x) = x^2$. Chúng ta tạm dừng ở đây, hẹn gặp lại các bạn ở kỳ sau. Bài tập về nhà. 1. Tìm đa thức $P(x)$ có bậc bé thua hoặc bằng $4$ sao cho $$P(1) = 2, ~~P(2) = 4, ~~P(3) = 6, ~~P(4) = 8, ~~P(5) = 10$$ 2. Dãy số Fibonacci được xác định như sau: $F_0=0$, $F_1=1$, $F_{n+1}=F_n+F_{n−1}$. Do đó $$F_0=0, ~F_1=1, ~F_2=1, ~F_3=2, ~F_4=3, ~F_5=5, ~F_6=8, \dots$$ Cho đa thức $P(x)$ thoã mãn điều kiện sau $$P(0) = 2011^{F_{2012}}, ~~P(1) = 2011^{F_{2011}}, ~~P(2) = 2011^{F_{2010}}, \dots $$ $$P(2010) = 2011^{F_{2}}, ~~P(2011) = 2011^{F_{1}}. $$ Chứng minh rằng đa thức $P(x)$ phải có bậc lớn hơn hoặc bằng $2011$. Labels: algebra, đa thức, đại số, interpolation, Lagrange, Newton, nội suy, polynomial Bài đăng Mới hơn Bài đăng Cũ hơn Trang chủỦng hộ Vườn Toán trên facebook
Lưu trữ Blog
- ► 2017 (1)
- ► tháng 2 (1)
- ► 2016 (7)
- ► tháng 12 (1)
- ► tháng 10 (1)
- ► tháng 5 (1)
- ► tháng 4 (1)
- ► tháng 3 (2)
- ► tháng 2 (1)
- ► 2015 (12)
- ► tháng 12 (1)
- ► tháng 11 (1)
- ► tháng 10 (1)
- ► tháng 7 (1)
- ► tháng 5 (2)
- ► tháng 4 (4)
- ► tháng 3 (1)
- ► tháng 1 (1)
- ► 2014 (12)
- ► tháng 12 (1)
- ► tháng 11 (3)
- ► tháng 8 (1)
- ► tháng 7 (1)
- ► tháng 6 (1)
- ► tháng 4 (1)
- ► tháng 3 (1)
- ► tháng 2 (2)
- ► tháng 1 (1)
- ► 2013 (26)
- ► tháng 10 (3)
- ► tháng 9 (2)
- ► tháng 8 (2)
- ► tháng 7 (2)
- ► tháng 6 (3)
- ► tháng 5 (3)
- ► tháng 4 (3)
- ► tháng 3 (3)
- ► tháng 2 (3)
- ► tháng 1 (2)
- ► 2011 (7)
- ► tháng 1 (7)
English Version
Bài toán kết nối facebook
Phép nhân thời đồ đá
Mắt Biếc Hồ Thu
Lục giác kỳ diệu
Định lý Pitago
1 = 2012 = 2013
Dãy số Fibonacci và một bài toán xếp hình
James vẽ hình
Câu hỏi của James
Hình vuông số chính phương kỳ diệu của Vianney!
Câu đố mẹo về đo lường
Công thức lượng giác Gauss cho 17-giác đều
Chào năm mới 2014
Chào năm mới 2015
Chào năm mới 2016
Không gian 4 chiều là gì?
Dựng hình đa giác đều
Dựng đa giác đều 15 cạnh
Ngày số Pi (2015)
Ngày số Pi (2016)
0.9999999... có bằng 1 không? (2015)
Hình tam giác
Bàn cờ vua và kim tự tháp
Dãy số
Dãy số - Phần 1Dãy số - Phần 2
Dãy số - Phần 3
Dãy số - Phần 4
Dãy số - Phần 5
Dãy số - Phần 6
Dãy số - Phần 7
Dãy số - Phần 8
Dãy số - Phần 9
Đại số
Tam giác PascalQuy nạp
Quy nạp II
Quy nạp III
Nhị thức Newton
1 = 2012 = 2013
Đa thức nội suy Newton
Đa thức nội suy Lagrange
Chứng minh Định lý Wilson bằng công thức nội suy
Tổng luỹ thừa
Số phức
Số phứcCông thức Moivre
Lượng giác
Công thức lượng giác cho góc bội
Công thức lượng giác Gauss cho 17-giác đều
Ngày số Pi (2016)
Radian là gì?
Số học
modulo - Phần 1
modulo - Phần 2
modulo - Phần 3
modulo - Phần 4
modulo - Phần 5
modulo - Phần 6
Số nguyên tố
Định lý Euclid về số nguyên tố
Một vài bài toán về số nguyên tố
Định lý Wilson
Bộ số Pitago
Modulo cho số hữu tỷ
Modulo cho số hữu tỷ II
Chứng minh lại định lý Wilson
Bổ đề Bezout
Thuật toán Euclid
Tổng luỹ thừa
Tổng luỹ thừa và định lý Wolstenholme
Câu đố mẹo về đo lường
Dựng đa giác đều 15 cạnh
Bò đi con bọ cạp!
Liên phân số Fibonacci
Hằng đẳng thức Pitago
Hình vuông số kỳ diệu của Euler
Tổ hợp
Bài toán kết nối facebookDãy số Fibonacci và một bài toán xếp hình
Hằng đẳng thức về dãy số Fibonacci
Dãy số Fibonacci và tam giác Pascal
Hình học
Định lý PitagoĐịnh lý đường cao tam giác vuông
Định lý Morley
Phương tích
Trục đẳng phương và tâm đẳng phương
Định lý Ceva và Định lý Menelaus
Lục giác kỳ diệu
Định lý Pascal
Định lý Pappus
Cánh bướm Pascal
Bài toán con bướm
Định lý Ngôi Sao Do Thái
Hãy xem xét trường hợp đặc biệt
Bài toán về tìm khoảng cách ngắn nhất và một tính chất của hình elíp
Điểm Fermat của hình tam giác
Điểm Fermat của hình tam giác II
Dựng hình
Dựng hình bằng thước và compaBài toán chia hình tứ giác
Dựng hình ngũ giác đều
Dựng hình đa giác đều
Dựng đa giác đều 15 cạnh
Định lý đường cao tam giác vuông
Thuật toán dựng hình
Công thức lượng giác Gauss cho 17-giác đều
Dựng hình chỉ bằng compa
Dùng compa chia đều đoạn thẳng
Giải tích
Ngày số Pi 2015Chuỗi Taylor
Tổng nghịch đảo bình phương
Giúp bé thông minh
Xì-tin năng động
Tạp chí toán học
Kỹ năng mềm
Tạo lập tài khoản googleCách tạo blog toán học
Học toán trên Wolfram
Dịch tài liệu toán học
Viết văn bản toán học PDF trực tuyến bằng LaTeX
Chia xẻ tài liệu toán học trên Google Drive
Từ khóa » Công Thức Hàm Lagrange
-
[Tối Ưu] Nhân Tử Lagrange Với đẳng Thức - Hai's Blog
-
Phương Pháp Nhân Tử Lagrange Với đẳng Thức - Quanghuy
-
Công Thức Nội Suy Lagrange Và ứng Dụng - Vương Trung Dũng
-
Sử Dụng Phương Pháp Nhân Tử Lagrange để Giải Quyết Một Số Bài ...
-
PHƯƠNG PHÁP NHÂN TỬ LAGRANGE TRONG BẤT ĐẲNG THỨC
-
Phương Pháp Lagrange Là Một Ví Dụ Với Hai Hạn Chế. Cực Trị Có điều ...
-
Phương Pháp Nhân Tử Lagrange để Tìm Cực Trị Hàm Nhiều Biến ...
-
Công Thức Nội Suy Lagrange - Lê Xuân Đại
-
Hàm Lagrange Trong Bất Đẳng Thức, Phương Pháp Nhân Tử ...
-
[PDF] BÀI 5 CỰC TRỊ CỦA HÀM NHIỀU BIẾN - Topica
-
Cơ Học Lý Thuyết – Phần 1: Phương Trình Của Chuyển động. Nguyên ...
-
[PDF] NHÂN TỬ LAGRANGE KẾT HỢP MÁY TÍNH CẦM TAY GIẢI QUYẾT ...