Điểm Cực Trị – Wikipedia Tiếng Việt
Có thể bạn quan tâm
Nội dung
chuyển sang thanh bên ẩn- Đầu
- Bài viết
- Thảo luận
- Đọc
- Sửa đổi
- Sửa mã nguồn
- Xem lịch sử
- Đọc
- Sửa đổi
- Sửa mã nguồn
- Xem lịch sử
- Các liên kết đến đây
- Thay đổi liên quan
- Trang đặc biệt
- Liên kết thường trực
- Thông tin trang
- Trích dẫn trang này
- Lấy URL ngắn gọn
- Tải mã QR
- Tạo một quyển sách
- Tải dưới dạng PDF
- Bản để in ra
- Khoản mục Wikidata
Bài này không có nguồn tham khảo nào. Mời bạn giúp cải thiện bài bằng cách bổ sung các nguồn tham khảo đáng tin cậy. Các nội dung không nguồn có thể bị nghi ngờ và xóa bỏ. Nếu bài được dịch từ Wikipedia ngôn ngữ khác thì bạn có thể chép nguồn tham khảo bên đó sang đây. (tháng 6 năm 2024) (Tìm hiểu cách thức và thời điểm xóa thông báo này) |
Trong toán học, một điểm cực trị của một hàm số khả vi của một biến số thực hoặc biến số phức là bất kỳ giá trị nào trong tập xác định của nó thỏa mãn đạo hàm bằng 0. Một số tác giả bao gồm các điểm giới hạn vào danh sách các điểm cực trị, nơi mà hàm số có thể được kéo dài bởi tính liên tục và đạo hàm tại đó không được xác định. Đối với một hàm số khả vi của nhiều biến số thực, một điểm cực trị là một điểm trong miền xác định của hàm số tại đó tất cả các đạo hàm riêng đều bằng 0. Giá trị của hàm số tại điểm cực trị được gọi là giá trị cực trị.
Các điểm hàm số có cực trị địa phương là các điểm cực trị.
Định nghĩa này mở rộng ra với các biến đổi vi phân giữa Rm và Rn, một điểm cực trị, trong trường hợp này là một điểm tại đó bậc của ma trận Jacobi là không phải lớn nhất. Định nghĩa mở rộng tiếp sang các biến đổi vi phân giữa các đa tạp vi phân, là các điểm tại đó bậc của ma trận Jacobi giảm đi. Trong trường hợp này, các điểm cực trị còn được gọi là các điểm rẽ nhánh.
Xem thêm
[sửa | sửa mã nguồn]- Điểm bất động
Tham khảo
[sửa | sửa mã nguồn]Bài viết liên quan đến toán học này vẫn còn sơ khai. Bạn có thể giúp Wikipedia mở rộng nội dung để bài được hoàn chỉnh hơn.
|
- Sơ khai toán học
- Giải tích nhiều biến
- Hoàn toàn không có nguồn tham khảo
- Tất cả bài viết sơ khai
Từ khóa » Khái Niệm điểm Cực Trị
-
Cực Trị Của Hàm Số: Chi Tiết Lý Thuyết Và Các Dạng Bài Tập Thường Gặp
-
Cực Trị Của Hàm Số | Lý Thuyết & Phân Dạng Bài Tập (Kèm Tài Liệu)
-
Lý Thuyết Cực Trị Của Hàm Số | SGK Toán Lớp 12
-
Cực Trị Của Hàm Số – Wikipedia Tiếng Việt
-
Cực Trị Của Hàm Số - Lý Thuyết Toán 12
-
Tóm Tắt Lý Thuyết Cực Trị Của Hàm Số
-
Cực Trị Của Hàm Số Là Gì? Cách Tìm Cực Trị (cực đại, Cực Tiểu) Của ...
-
Cực Trị Hàm Số
-
Tìm Cực Trị Của Hàm Số: Lý Thuyết, Các Dạng Toán Và Bài Tập Có Lời Giải
-
Cưc đại Và Cực Tiểu Là Gì? Cách Xác định điểm Cực Trị Của Hàm Số
-
Số Điểm Cực Trị Là Gì - Lý Thuyết Cực Trị Của Hàm Số
-
Điểm Cực đại, Cực Tiểu Của Hàm Số Là Gì ? Hai Quy Tắc Tìm Cực Trị
-
Lý Thuyết Cực Trị Hàm Số Hay, Chi Tiết Nhất - Toán Lớp 12
-
Lý Thuyết Toán 12 Cực Trị Của Hàm Số Và Phương Pháp Tìm Cực Trị