Diện Tích Hình Phẳng Giới Hạn Bởi \(y = X^2 , Y = 0 , X = 1 , X = 2 \) Bằng:
Có thể bạn quan tâm
- Câu hỏi:
Diện tích hình phẳng giới hạn bởi \(y = x^2 , y = 0 , x = 1 , x = 2 \) bằng:
- A. 4/3
- B. 7/3
- C. 8/3
- D. 1
Lời giải tham khảo:
Đáp án đúng: B
Diện tích hình phẳng giới hạn bởi \(y=x^2, y=0, x=1, x=2\) bằng:
\( \int_1^2 {{x^2}} dx = \frac{{{x^3}}}{3} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}\)
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 227577
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi giữa HK2 môn Toán 12 năm 2021 - Trường THPT Hoàng Văn Thụ
40 câu hỏi | 60 phút Bắt đầu thi
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Biết F(x) là một nguyên hàm của hàm số \(f(x)=\sqrt{\ln ^{2} x+1} \cdot \frac{\ln x}{x}\) thoả mãn \(F(1)=\frac{1}{3}\) . Giá trị của \(F^{2}(e)\) là
- Nếu F(x) là một nguyên hàm của hàm số \(f(x)=\frac{1}{x-1}\) và \(F(2)=1\) thì \(F(3)\) bằng
- Biết F(x) là một nguyên hàm của hàm số \(f(x)=\frac{x}{\sqrt{8-x^{2}}}\) thoả mãn \(F(2)=0\) . Khi đó phương trình F(x)=x có nghiệm là
- Tính \(\int \tan x d x\)
- Kết quả \(\int e^{\sin x} \cos x d x\) bằng
- Tích phân \(\int_{0}^{\pi} x \cos \left(x+\frac{\pi}{4}\right) d x\) có giá trị bằng
- Ta có Các khẳng định dưới đây, khẳng định nào sai?
- Xét tích phân \(I=\int_{0}^{\pi / 3} \frac{\sin 2 x}{1+\cos x} d x\) . Thực hiện phép đổi biến \(t=\cos x\), ta có thể đưa I về dạng nào sau đây?
- Giả sử hàm số f liên tục trên đoạn [0;2] thỏa mãn \(\int_{0}^{2} f(x) d x=6\) . Giá trị của tích phân \(\int_{0}^{\pi / 2} f(2 \sin x) \cos x d x\) là
- Giả sử F là một nguyên hàm của hàm số \(y=x^{3} \sin ^{5} x\) trên khoảng \((0 ;+\infty)\) . Khi đó tích phân \(\int_{1}^{2} 81 x^{3} \sin ^{5} 3 x d x\) có giá trị bằn
- Diện tích hình phẳng giới hạn bởi \(y = x^2 , y = 0 , x = 1 , x = 2 \) bằng:
- Diện tích của hình phẳng giới hạn bởi các đường \(y = x^2+ 1 , y = 0, x = - 1, x = 2 \) bằng:
- Cho hình phẳng (H) giới hạn bởi đồ thị hàm số \(y = x^3 - 4x \), trục hoành, đường thẳng x = - 2 và đường thẳng x = 1. Diện tích của hình phẳng ( H) bằng
- Tìm diện tích hình phẳng giới hạn bởi các đường \(y = (x - 1)e^x\), trục hoành, đường thẳng x = 0 và x = 1
- Diện tích hình phẳng giới hạn bởi các đường \(y = x^2 - x , y = 2x - 2 , x = 0 , x = 3\) được tính bởi công thức:
- Điểm N là hình chiếu của M(x;y;z) trên trục tọa độ Oz thì:
- Trong không gian với hệ tọa độ (Oxyz), cho vecto \(\overrightarrow {AO} = 3\left( {\vec i + 4\vec j} \right) - 2\overrightarrow k + 5\overrightarrow j \) Tọa độ điểm A là:
- Trong không gian (Oxyz ), cho điểm M thỏa mãn hệ thức \( \overrightarrow {OM} = 2\overrightarrow i + \overrightarrow j \). Tọa độ của điểm M là
- Hoành độ điểm M thỏa mãn \( \overrightarrow {OM} = - \overrightarrow i + 2\overrightarrow j + \overrightarrow k \)
- Tung độ của điểm M thỏa mãn \( \overrightarrow {OM} = - \overrightarrow i + 2\overrightarrow j + \overrightarrow k \) là:
- Trong không gian Oxyz cho hai điểm C(0;0;3) và M (-1;3;2) . Mặt phẳng (P) qua C, M đồng thời chắn trên các nửa trục dương Ox, Oy các đoạn thẳng bằng nhau. (P) có phương trình là :
- Trong không gian với hệ tọa độ Oxyz , cho các điểm \(A(-1 ;-2 ; 0), B(0 ;-4 ; 0), C(0 ; 0 ;-3)\). Phương trình mặt phẳng (P) nào dưới đây đi qua A , gốc tọa độ O và cách đều hai điểm B và C?
- Trong không gian với hệ tọa độ Oxyz , cho điểm A(1;-1;1) và mặt phẳng \((P):-x+2 y-2 z+11=0\). Gọi (Q) là mặt phẳng song song (P) và cách A một khoảng bằng 2. Tìm phương trình mặt phẳng (Q).
- Trong không gian với hệ tọa độ Oxyz , cho bốn điểm \(A(0 ; 0 ;-6), B(0 ; 1 ;-8), C(1 ; 2 ;-5)\) và D(4;3;8) . Hỏi có tất cả bao nhiêu mặt phẳng cách đều bốn điểm đó?
- Trong không gian với hệ toạ độ Oxyz , cho mặt phẳng \((P): x-2 y+2 z+9=0\) , mặt cầu (S) tâm O tiếp xúc với mặt phẳng (P) tại H(a;b;c) Tổng a+b+c bằng
- Trong không gian Oxyz , cho điểm A(1;2;-1) và mặt phẳng \((P): x-y+2 z-3=0\) . Đường thẳng d đi qua A và vuông góc với mặt phẳng (P) có phương trình là
- Trong hệ tọa độ Oxyz , cho hình hộp ABCD.MNPQ tâm I , biết A(0;1;2) , B(1;0;1), C(2;0;1) , và Q( -1;0;1) . Đường thẳng d qua I , song song với AC có phương trình là
- Trong không gian với hệ tọa độ Oxyz , cho điểm A(2;-1;3) và mặt phẳng \((P): 2 x-3 y+z-1=0\) . Viết phương trình đường thẳng d đi qua A và vuông góc với (P)
- Trong không gian với hệ tọa độ Oxyz , viết phương trình tham số của đường thẳng qua A(1;2;-2) và vuông góc với mặt phẳng \((P): x-2 y+3=0\)
- Viết phương trình tham số của đường thẳng d qua I (-1;5;2) và song song với trục Ox.
- Trong không gian tọa độ Oxyz, lập pt mặt cầu tâm \(I\left( 2;3;-1 \right)\) cắt đường thẳng
- Trong không gian với hệ tọa độ Oxyz, cho hai điểm (Sleft( 0;0;1 ight)).
- Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đt \(\text{ }\!\!\Delta\!\!\t
- Trong không gian Oxyz, cho \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y-6z-2=0\).
- Không gian cho mặt cầu có phương trình (left( S ight):{{left( x+3 ight)}^{2}}+{{left( y-5 ight)}^{2}}+{{left( z-7 igh
- Cho \(\vec a=(1;0;-3), \vec b=(2;1;2)\). Khi đó \(|[\vec a, \vec b]|\) có giá trị là:
- Trong không gian Oxyz , cho hình hộp ABCD. A B C D. A(1;1;-6),B(0;0;-2), C(-5;1;2);D'(2;1;-1) Thể tích khối hộp đã cho bằng
- Trong không gian với hệ tọa độ Oxyz , cho A(1;2;0); B(3;-1;1), C(1;1;1) . Tính diện tích S của tam giác ABC
- Cho tứ diện ABCD biết \(A(2;3;1);B(4;1;-2);C(6;3;7);D(1;-2;2)\). Thể tích tứ diện ABCD là
- Cho tứ diện ABCD biết \(A(0;-1;3);B(2;1;0),C(-1;3;3);D(1;-1;-1)\). Tính chiều cao AH của tứ diện
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Giải tích 12 Chương 3
Đề thi giữa HK1 môn Toán 12
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn bài Người lái đò sông Đà
Đề thi giữa HK1 môn Ngữ Văn 12
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 7 Lớp 12 Economic Reforms
Tiếng Anh 12 mới Review 1
Đề thi giữa HK1 môn Tiếng Anh 12
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Vật lý 12 Chương 3
Đề thi giữa HK1 môn Vật Lý 12
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Hoá Học 12 Chương 4
Đề thi giữa HK1 môn Hóa 12
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Ôn tập Sinh 12 Chương 5
Đề thi giữa HK1 môn Sinh 12
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 2 Lịch Sử VN
Đề thi giữa HK1 môn Lịch Sử 12
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
Đề thi giữa HK1 môn Địa lý 12
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Đề thi giữa HK1 môn GDCD 12
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Đề thi giữa HK1 môn Công nghệ 12
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Đề thi giữa HK1 môn Tin học 12
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Video ôn thi THPT QG môn Toán
Video ôn thi THPT QG môn Văn
Video ôn thi THPT QG môn Sinh
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Hóa
Đàn ghi ta của Lor-ca
Tây Tiến
Ai đã đặt tên cho dòng sông
Sóng- Xuân Quỳnh
Người lái đò sông Đà
Quá trình văn học và phong cách văn học
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Đất Nước- Nguyễn Khoa Điềm
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » Diện Tích Hình Phẳng Giới Hạn Bởi Y=x^2
-
Diện Tích Hình Phẳng Giới Hạn Bởi (y = (x^2) ), (y = 0 ), (x =
-
Tính Diện Tích Hình Phẳng Giới Hạn Bởi Y = X² Và Y = X + 2
-
Diện Tích Hình Phẳng được Giới Hạn Bởi Các đồ Thị Hàm Số Y = X^2 Và ...
-
Diện Tích Hình Phẳng Giới Hạn Bởi Các đồ Thị Y=x^2 Và Y - Tự Học 365
-
[LỜI GIẢI] Diện Tích Hình Phẳng Giới Hạn Bởi Hai đường Y = X^2 - 2
-
Tính Diện Tích Hình Phẳng Giới Hạn Bởi Hai đồ Thị Hàm Số
-
Tính Diện Tích Hình Phẳng Giới Hạn Bởi Y=x^2...
-
Tính Diện Tích Hình Phẳng Giới Hạn Bởi Hai đồ Thị Y=x2+2x , Y=x+2 .
-
Hãy Tính Diện Tích Hình Phẳng Giới Hạn Bởi Các đường: \(y={x^2},y =x ...
-
Tính Diện Tích Hình Phẳng Giới Hạn Bởi Các đường Y=x^2, Y=-1/3x +4/3
-
Biết Diện Tích Hình Phẳng Giới Hạn Bởi Các đường - Y - = - X - + - 2
-
Diện Tích Hình Phẳng Giới Hạn Bởi Y = X2 - X + 3 Và Y = 2x + 1 Là:
-
Diện Tích Hình Phẳng Giới Hạn Bởi Các đường \(y = {x^2} - X\), \(y = 2x
-
Diện Tích Hình Phẳng Giới Hạn Bởi Hai đường \(y = {x^2} - 2\) Và \(y = 3x