Định Lý Pitago Lý Thuyết Và Bài Tập Về Định Lí Py-ta-go Lớp 7

Định lý Pitago được coi là một trong những tiền đề cơ bản trong hình học. Tuy nhiên nhiều bạn học sinh chưa nắm được công thức và cách giải như thế nào? Chính vì thế hãy cùng Download.vn theo dõi bài viết dưới đây nhé.

Bài tập Định lí Py-ta-go
Bài tập Định lí Py-ta-go

Định lý Pitago là tài liệu vô cùng hữu ích tổng hợp kiến thức lý thuyết kèm theo các dạng bài tập trắc nghiệm kết hợp tự luận. Qua đó các em học sinh sẽ được thử sức với các dạng bài tập từ cơ bản đến nâng cao. Qua tài liệu này giúp các em tự tin kiểm tra và nắm vững kiến thức mình đã học ở chương trình Toán 7 và Toán 8. Với một số bài tập Định lý Pitago tự luyện nhằm giúp các em ôn luyện vận dụng vào giải bài tập thật nhuần nhuyễn. Vậy sau đây là trọn bộ tài liệu về Định lý Pitago mời các bạn cùng theo dõi tại đây. Bên cạnh đó các bạn xem thêm cách chứng minh tam giác vuông.

Định lý Pytago: Lý thuyết và Bài tập

  • I. Nhà toán học Pytago (Pythagoras)
  • II. Lý thuyết Định lí Py-ta-go
  • III. Bài tập trắc nghiệm Định lí Py-ta-go
  • IV. Bài tập tự luận Định lí Py-ta-go
  • V. Bài tập định lý Pitago (Tự luyện)

I. Nhà toán học Pytago (Pythagoras)

Trong toán học, định lý Pi – ta – go là một liên hệ giữa hình học phẳng giữa các cạnh trong một tam giác vuông

- Pythagoras (sinh khoảng 580 đến 572 TCN – mất khoảng năm 500 đến 490 TCN) là một nhà triết học người Hy Lạp và là người sáng lập ra phong trào tín ngưỡng có tên thuyết học Pythagoras. Ông thường được biết đến như một nhà khoa học và toán học vĩ đại. Trong tiếng việt, tên của ông thường được phiên âm từ tiếng Pháp (Pythagore) thành Py – ta – go

- Pythagoras đã thành công trong việc chứng minh tổng ba góc của một tam giác bằng 1800 và nổi tiếng nhất nhờ định lý toán học mang tên ông, Ông cũng được biết đến là “cha đẻ của số học”. Ông đã có nhiều đóng góp quan trọng cho triết học và tín ngưỡng vào cuối thế kỷ 7 TCN. Về cuộc đời và sự nghiệp của ông, có quá nhiều các huyền thoại khiến việc tìm lại sự thật lịch sử không dễ dàng. Pythagoras và các học trò của ông tin rằng mọi sự vật đều liên hệ đến Toán học và mọi sự việc đều có thể tiên đoán qua các chu kỳ.

II. Lý thuyết Định lí Py-ta-go

1. Định lý Pitago

Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.

ΔABC vuông tại A ⇒ BC2 = AB2 + AC2

2. Công thức Pytago đảo

Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.

ΔABC có BC2 = AB2 + AC2 ∠BAC = 90o

3. Sơ đồ tư duy định lý Py-ta-go

III. Bài tập trắc nghiệm Định lí Py-ta-go

Bài 1: Cho tam giác ABC vuông tại B. Khi đó

A. AB2 + BC2 = AC2B. AB2 - BC2 = AC2C. AB2 + AC2 = BC2D. AB2 = AC2 + BC2

Ta có tam giác ABC vuông tại B, theo định lí Py – ta – go ta có: AB2 + BC2 = AC2

Chọn đáp án A.

Bài 2: Cho tam giác ABC vuông cân tại A. Tính độ dài cạnh BC biết AB = AC = 2dm

A. BC = 4 dm B. BC = √6 dm C. BC = 8dm D. BC = √8 dm

Áp dụng định lí Py – ta – go ta có: BC2 = AB2 + AC2

Khi đó ta có:

B C=\sqrt{A B^{2}+A C^{2}}=\sqrt{4+4}=\sqrt{8}(d m)\(B C=\sqrt{A B^{2}+A C^{2}}=\sqrt{4+4}=\sqrt{8}(d m)\)

Chọn đáp án D.

Bài 3: Một tam giác vuông có cạnh huyền bằng 26cm và có độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông?

A. 10 cm, 22 cmB. 10 cm, 24 cm C. 12 cm, 24 cm D. 15 cm, 24 cm

Gọi độ dài các cạnh góc vuông lần lượt là x, y (x, y > 0)

Theo định lí Py – ta – go ta có: x2 + y2 = 262 ⇔ x2 + y2 = 676

Theo bài ra ta có:

\frac{x}{5}=\frac{y}{12} \Rightarrow \frac{x^{2}}{25}=\frac{y^{2}}{144}=\frac{x^{2}+y^{2}}{25+144}=\frac{676}{169}=4\(\frac{x}{5}=\frac{y}{12} \Rightarrow \frac{x^{2}}{25}=\frac{y^{2}}{144}=\frac{x^{2}+y^{2}}{25+144}=\frac{676}{169}=4\)

Khi đó ta có:

\left\{\begin{array}{l}x^{2}=25.4 \\ y^{2}=144.4\end{array} \Rightarrow\left\{\begin{array}{l}x=10 \mathrm{~cm} \\ x=24 \mathrm{~cm}\end{array}\right.\right.\(\left\{\begin{array}{l}x^{2}=25.4 \\ y^{2}=144.4\end{array} \Rightarrow\left\{\begin{array}{l}x=10 \mathrm{~cm} \\ x=24 \mathrm{~cm}\end{array}\right.\right.\)

Chọn đáp án B.

Bài 4: Cho tam giác ABC vuông tại A có AC = 20cm. Kẻ AH vuông góc với BC. Biết BH = 9cm, HC = 16cm. Tính độ dài cạnh AB, AH ?

A. AH = 12cm, AB = 15cmB. AH = 10cm, AB = 15cmC. AH = 15cm, AB = 12cmD. AH = 12cm, AB = 13cm

Ta có: BC = HB + HC = 9 + 16 = 25 (cm)

Xét tam giác ABC vuông tại A, theo định lí Py – ta – go ta có:

BC2 = AB2 + AC2 ⇒ AB2 = BC2 - AC2 = 252 - 202 = 225 ⇒ AB = 15cm

Xét tam giác ABH vuông tại H, theo định lí Py – ta – go ta có:

HB2 + HA2 = AB2 ⇒ AH2 = AB2 - HB2 = 152 - 92 = 144 ⇒ AH = 12cm

Vậy AH = 12cm, AB = 15cm

Chọn đáp án A.

Bài 5: Cho hình vẽ. Tính x

A. x = 10cmB. x = 11cmC. x = 8cm D. x = 5cm

Xét tam giác ABC vuông tại B ta có:

⇒ x2 + 122 = 132 ⇒ x2 = 132 - 122 = 25

Khi đó: x = 5cm

Chọn đáp án D.

IV. Bài tập tự luận Định lí Py-ta-go

Câu 1

Tìm độ dài x trên hình 127.

Giải

- Hình a

Áp dụng định lí Pi-ta-go ta có:

x2 = 122 + 52 = 144 + 25 = 169 ⇒ x = 13

- Hình b

Ta có: x2 = 12 + 22 = 1 + 4 = 5

⇒ x = √5

Hình c

Theo định lí Pi-ta-go 292 = 212 + x2

Nên x2 = 292 - 212 = 841 - 441 = 400

⇒ x = 20

- Hình d

Theo định lí Pi-ta-go ta có:

x2 = (√7)2 + 32 = 7 + 9 = 16

⇒ x = 4

Câu 2. Đoạn lên dốc từ C đến A dài 8,5m, độ dài CB bằng 7,5m. Tính chiều cao AB.

Vẽ hình minh họa:

Áp dụng định lí Py–ta–go vào tam giác vuông ABC vuông tại B ta có:

AB2 + BC2 = AC2

Nên AB2 = AC2 – BC2

= 8,52 – 7,52

= 72,25 – 56,25

=16

⇒ AB = 4 (m)

Câu 3: Tính chiều cao của bức tường, biết rằng chiều dài của thang là 4m và chân thang cách tường 1m

Giải

Vẽ hình minh họa:

Kí hiệu như hình vẽ:

Vì mặt đất vuông góc với chân tường nên góc C = 90º.

Áp dụng định lí Pi-ta-go trong ΔABC ta có:

AC2 + BC2 = AB2

⇒ AC2 = AB2 - BC2 = 16 - 1 = 15

⇒ AC = √15 ≈ 3,87(m) hay chiều cao của bức tường là 3,87m.

Câu 4. Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau.

a) 9cm, 15cm, 12cm.

b) 5dm, 13dm, 12dm.

c) 7m, 7m, 10m.

Giải 

a) Ta có 92 = 81 ; 152 =225 ; 122 =144

Mà 225 = 144 + 81

Nên Theo định lí Py – ta – go đảo, tam giác có độ dài 3 cạnh 9cm ,12cm ,15cm là tam giác vuông.

b) Ta có 52 = 25 ; 132 =169 ; 122 =144

Mà 169 = 144 + 25

Nên Theo định lí Py – ta – go đảo tam giác có độ dài 3 cạnh 5dm ,13dm ,12dm là tam giác vuông.

c) Ta có 72 = 49 ; 102 =100

Mà 100 ≠ 49 + 49

Nên tam giác có độ dài 3 cạnh 7m, 7m, 10m không là tam giác vuông

V. Bài tập định lý Pitago (Tự luyện)

Bài 1:

Cho DABC vuông tại A. biết AB + AC = 49cm; AB – AC = 7cm. Tính cạnh BC.

Bài 2:

Cho DABC vuông tại A. có BC = 26cm, AB:AC = 5:12. Tính độ dài AB và AC.

Bài 3:

Cho DABC vuông tại A. Kẻ đ ường cao AH. Biết BH = 18 cm; CH = 32cm. Tính các cạnh AB và AC.

Bài 4:

Cho DABC có AB = 9cm; AC = 11cm. Kẻ đường cao AH, bi ết BH = 26cm. Tính CH ?

Bài 5: Cho DABC vuông tại A. Kẻ AH vuông góc BC.

a/ Chứng minh: AB2 + CH2 = AC2 + BH2

b/ Trên AB lấy E, trên AC lấy đi ểm F. Ch ứng minh: EF < BC.

c/ Bi ết AB = 6cm, AC = 8 cm. Tính AH, BH, CH.

Bài 6:

Cho DABC cân, AB = AC = 17cm. Kẻ BD vuông góc AC. Tính BC, biết BD = 15cm.

Bài 7: Cho DABC. Biết BC = 52cm, AB = 20cm, AC = 48cm.

a/ CM: DABC vuông ở A.

b/ Kẻ AH vuông góc BC. Tính AH.

Bài 8:

Hãy kiểm tra xem tam giác ABC có phải là tam giác vuông không nếu các cạnh AB, AC và BC tỉ lệ với:

a/ 9; 12 và 15 b/ 3; 2,4 và 1,8.

c/ 4; 6 và 7 d/ 4; 4 và 4.

Bài 9: Cho DABC vuông tại A, đường cao AH, trên đó lấy điểm D. Trên tia đối của tia HA lấy E sao cho HE = AD. Đường vuông góc với AH tại D cắt AC tại F.

Chứng minh rằng: EB vuông góc EF.

Bài 10: Cho góc nhọn xOy. Điểm H nằm trên tia phân giác của góc xOy. Từ H dựng các đường vuông góc xuống hai cạnh Ox và Oy (A thuộc Ox và B thuộc Oy).

a) Chứng minh tam giác HAB là tam giác cân

b) Gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OH.

Chứng minh BC ⊥ Ox.

c) Khi góc xOy bằng 600, chứng minh OA = 2OD.

Bài 11: 

Cho tam giác ABC cân tại A. Gọi M, N là trung điểm các cạnh AB, AC. Các đường thẳng vuông góc với AB, AC tại M; N cắt nhau tại điểm O, AO cắt BC tại H. Chứng minh:

a. AMO = ANO

b. AH là phân giác của góc A

c. HB = HC và AH ⊥  BC

d. So sánh OC và HB

Bài 12: Cho tam giác cân ABC (AB = AC). Từ trung điểm M của BC vẽ ME ⊥ AC và MF ⊥AC. Chứng minh:

a. BEM = CFM

b. AE = AF

c. AM là phân giác của góc EMF

d. So sánh MC và ME

Bài 13: Cho tam giác ABC có = 900 , AB = 8cm, AC = 6cm .

a. Tính BC .

b. Trên cạnh AC lấy điểm E sao cho AE = 2cm; trên tia đối của tia AB lấy điểm D sao cho AD = AB. Chứng minh ∆BEC = ∆DEC .

c. Chứng minh DE đi qua trung điểm cạnh BC

Bài 14:  Cho góc nhọn xOy, trên 2 cạnh Ox, Oy lần lượt lấy 2 điểm A và B sao cho OA = OB, tia phân giác của góc xOy cắt AB tại I.

a) Chứng minh OI ⊥ AB .

b) Gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OI Chứng minh BC ⊥ Ox .

Bài 15:  Cho tam giác nhọn ABC có AB > AC, vẽ đường cao AH.

a. Chứng minh HB > HC

b. So sánh góc BAH và góc CAH.

c. Vẽ M, N sao cho AB, AC lần lượt là trung trực của các đoạn thẳng HM, HN. Chứng minh tam giác MAN là tam giác cân.

Bài 16: Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:

A. 15 cm; 8 cm; 18 cmB. 21 cm; 20 cm; 29 cmC. 5 cm; 6 cm; 8 cmD. 2 cm; 3 cm; 4 cm

Bài 17 Cho hình vuông ABCD có cạnh bằng 4 cm. Tính độ dài đường chéo AC của hình vuông.

A. AC = √32 cmB. AC = 32 cmC. AC = 4cmD. AC = 16 cm

Bài 18: Tính cạnh huyền của tam giác đó.

A. 12 cmB. 15 cmC. 9 cmD. 36 cm

Bài 19: Một bạn học sinh thả diều ngoài đồng, cho biết đoạn dây diều từ tay bạn đến diều dài 170 m và bạn đứng cách nơi diều được thả lên theo phương thẳng đứng là 80 m. Tính độ cao của con diều so với mặt đất, biết tay bạn học sinh cách mặt đất 2 m.

Bài 20: Hai cây A và B được trồng dọc trên đường, cách nhau 24 m và cách đều cột đèn D. Ngôi trường C cách cột đèn D 9 m theo hướng vuông góc với đường. Tính khoảng cách từ mỗi cây đến ngôi trường.

Từ khóa » định Lý Pi Ta Go Lớp 7