Đường Trung Tuyến Là Gì, Tính Chất Và Ví Dụ Minh Họa - TopLoigiai
Có thể bạn quan tâm
1. Định nghĩa đường trung tuyến là gì?
Đường trung tuyến của một đoạn thẳng là một đường thẳng đi qua trung điểm của đoạn thẳng đó.
2. Định nghĩa đường trung tuyến của tam giác
Trong hình học thì đường trung tuyến của một tam giác được định nghĩa là một đoạn thẳng nối từ đỉnh của tam giác tới trung điểm của cạnh đối diện. Mỗi tam giác sẽ có 3 đường trung tuyến.
Ví dụ:
Định nghĩa đường trung tuyến của tam giác
Theo như hình vẽ trên thì các đoạn thẳng AI, CN, BM sẽ là 3 trung tuyến của tam giác ABC.
3. Tính chất và định lý đường trung tuyến trong tam giác
- Đồng quy tại 1 điểm
Ba đường trung tuyến của tam giác đồng quy tại 1 điểm, được gọi là trọng tâm của tam giác.
Khoảng cách từ trọng tâm của tam giác đến đỉnh bằng 2/3 độ dài đường trung tuyến ứng với đỉnh đó.
- Chia thành các tam giác nhỏ có diện tích bằng nhau
Mỗi đường trung tuyến chia diện tích của tam giác thành hai phần bằng nhau. Ba trung tuyến chia tam giác thành sáu tam giác nhỏ với diện tích bằng nhau.
4. Một số định lý đường trung tuyến trong tam giác
Thực hành: Cắt một tam giác bằng giấy. Gấp lại để xác định trung điểm một cạnh của nó. Kẻ đoạn thẳng nối trung điểm này với đỉnh đối diện. Bằng cách tương tự, hãy vẽ tiếp hai đường trung tuyến còn lại.
Quan sát tam giác vừa cắt (trên đó đã vẽ ba đường trung tuyến). Cho biết: Ba đường trung tuyến của tam giác này có cùng đi qua một điểm hay không?
Định lý 1: Ba đường trung tuyến của một tam giác cùng đi qua một điểm. điểm gặp nhau của 3 đường trung tuyến gọi là trọng tâm (centroid) của tam giác đó.
Định lý 2: Đường trung tuyến của tam giác chia tam giác ấy thành hai tam giác có diện tích bằng nhau. Ba trung tuyến chia tam giác thành 6 tam giác nhỏ với diện tích bằng nhau.
Tam giác ΔABC có D, E, F là BC, CA, AB. Khi đó AD, BE, CF lần lượt là các đường trung tuyến xuất phát từ ba đỉnh A, B, C. AD, BE, CF đồng quy ở G.
Ta có G là trọng tâm của tam giác ΔABC.
Theo định nghĩa, AE = EC, CD = DB, BF = FA, do đó:
SΔAGE = SΔCGE; SΔBGD = SΔCGD; SΔAGF = SΔBGF trong đó kí hiệu SΔABC là diện tích của tam giác ABC.
Điều này đúng bởi trong mỗi trường hợp hai tam giác có chiều dài đáy bằng nhau, và có cùng đường cao từ đáy, mà diện tích của một tam giác thì bằng ½ chiều dài đáy nhân với đường cao, khi ấy hai tam giác ấy có diện tích bằng nhau.
Chúng ta có:
SΔACG = SΔACD − SΔCGD; SΔABG = SΔABD − SΔBGD
Do đó ta có :SΔABG = SΔACG và SΔDBG = SΔDCG; SΔCDG = ½SΔACG
Do SΔBGF = SΔAGF, SΔAGF = ½SΔACG = SΔBGF = ½SΔBCG
Do vậy, SΔAFG=SΔBFG=SΔBGD=SΔCGD
Sử dụng cùng phương pháp này. ta có thể chứng minh điều sau:
SΔAFG=SΔBFG=SΔBGD=SΔCGD=SΔCGE=SΔAGE
Định lý 3: Về vị trí trọng tâm: Trọng tâm của một tam giác cách mỗi đỉnh một khoảng bằng 23 độ dài đường trung tuyến qua đỉnh ấy.
Ví dụ như sau:
Tam giác ΔABC có AD, BE, CF lần lượt là các đường trung tuyến xuất phát từ ba đỉnh A, B, C. Theo định lý 1 thì ba đường này đồng quy tại một điểm gọi là điểm G.
Theo định lý 2 thì:
AG=⅔ AD;BG=⅔ BE;CG=⅔ CF
5. Định nghĩa đường trung tuyến trong tam giác đặc biệt
Tìm hiểu đường trung tuyến trong tam giác vuông
Tam giác vuông là một trường hợp đặc biệt của tam giác, trong đó, tam giác sẽ có một góc có độ lớn là 90 độ, và hai cạnh tạo nên góc này vuông góc với nhau.
Chính bởi vậy mà đường trung tuyến của tam giác vuông sẽ có đầy đủ những tính chất của một đường trung tuyến tam giác.
Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.
Một tam giác có trung tuyến ứng với một cạnh bằng nửa cạnh đó thì tam giác ấy là tam giác vuông.
Ví dụ 1:
Đường trung tuyến trong tam giác vuông
Tam giác ABC vuông ở B, độ dài đường trung tuyến BM sẽ bằng MA, MC và bằng ½ AC
Ngược lại nếu BM = ½ AC thì tam giác ABC sẽ vuông ở B.
Ví dụ 2:
Tam giác ΔABC vuông ở A, độ dài đường trung tuyến AM sẽ bằng MB, MC và bằng ½ BC.
Ngược lại nếu AM = ½ BC thì tam giác ΔABC sẽ vuông ở A.
Chứng minh:
Cho tam giác ΔABC. Gọi M là trung điểm của BC. Chứng minh rằng:
1. Nếu = 900 thì MA = 1/2 BC
2. Nếu MA = ½ BC thì góc ∠A = 900.
Xét tam giác ΔABC có M là trung điểm của BC.
Trên tia đối của tia MA lấy điểm N sao cho MN = MA.
Ta có:
∠AMB = ∠NMC (đối đỉnh)
BM = CM (giả thiết)
MA = MN (dựng hình)
Suy ra: tam giác tam giác ΔMAB = tam giác tam giác ΔMNC (c.g.c)
Suy ra: NC = AB và ∠MBA = ∠MCN
a) Do ∠MBA = ∠MCN nên AB // NC suy ra ∠BAC + ∠ACN = 1800.
Nếu góc ∠BAC = 900 thì góc ACNˆ = 900.
Khi đó ta có: tam giác ΔABC = tam giác ΔCNA (c.g.c) vì có AC chung; AB = NC (cmt) và ∠BAC = ∠ACN = 900.
Ta có: AN = BC => AM = ½ BC
b) Ta có: MA = ½ AN. Nếu MA = ½ BC thì AN = BC.
Lại có AB = CN (cmt)
Suy ra tam giác ΔABC = tam giác ΔCNA (c.c.c), suy ra: góc ∠BAC = góc ∠ACN
Mà ∠BAC + ∠ACN = 1800 (vì AB // CA) nên ∠BAC = 900 (dpcm)
6. Tìm hiểu đường trung tuyến trong tam giác cân, tam giác đều
Tính chất: Đường trung tuyến trong tam giác cân (và tam giác đều) ứng với cạnh đáy thì vuông góc với cái đấy và chia tam giác các thành hai tam giác bằng nhau.
Tam giác đều ΔABC có AM, BN, CP lần lượt là ba đường trung tuyến của tam giác. Theo tính chất của đường trung tuyến trong tam giác đều ta có:
AM⊥BC; BN⊥AC; CP⊥AB và ΔABM = ΔACM; ΔABN = ΔCBN; ΔACP = ΔBCP.
7. Công thức liên quan tới độ dài của trung tuyến
Ta có thể tính được độ dài đường trung tuyến của một tam giác thông qua độ dài các cạnh của tam giác ấy. Độ dài của trung tuyến được tính bằng định lý Apollonius như sau:
Trong đó a, b và c là các cạnh của tam giác với các trung tuyến tương ứng ma, mb, mc từ trung điểm.
Vậy là ta đã tìm hiểu khá đầy đủ về định nghĩa và tính chất của đường trung tuyến, cũng như áp dụng nó trong một số trường hợp đặc biệt. Sau đây chúng ta hãy luyện tập thông qua một số bài tập đơn giản nhé.
8. Bài tập về đường trung tuyến
Bài tập trắc nghiệm đường trung tuyến
Câu 1: Cho tam giác ABC cân. Biết AB=AC=10cm, BC=12cm. M là trung điểm BC. Độ dài trung tuyến AM là:
A. 22cm
B. 2cm
C. 6cm
D. 8cm
Đáp án: D
Câu 2: Tam giác ABC có trung tuyến AM = 9cm và trọng tâm G. Độ dài đoạn AG là:
A. 4,5cm
B. 3cm
C. 6cm
D. 4cm
Đáp án: C.
Câu 3: Cho tam giác ABC có hai đường trung tuyến BM và CN. Nếu BM = CN thì ΔABC là tam giác gì?
A. Tam giác cân
B. Tam giác vuông
C. Tam giác đều
D. Tam giác vuông cân
Đáp án: A.
Bài tập tự luận
Câu 1: Cho hai đường thẳng x’x và y’y gặp nhau ở O. Trên tia Ox lấy hai điểm A và B sao cho A nằm giữa O và B, AB=2OA. Trên y’y lấy hai điểm L và M sao cho O là trung điểm của đoạn thẳng LM. Nối B với L, B với M và gọi P là trung điểm của đoạn thẳng MB, Q là trung điểm của đoạn thẳng LB. Chứng minh các đoạn thẳng LP và MQ đi qua A.
Cách giải:
Ta có O là trung điểm của đoạn LM (gt)
Suy ra BO là đường trung tuyến của ΔBLM (1)
Mặt khác BO = BA + AO vì A nằm giữa O, B hay BO = 2 AO + AO= 3AO vì AB = 2AO (gt)
Suy ra AO= ⅓BO hay BA= ⅔BO (2)
Từ (1) và (2) suy ra A là trọng tâm của ΔBLM ( tính chất của trọng tâm)
mà LP và MQ là các đường trung tuyến của ΔBLM vì P là trung điểm của đoạn thẳng MB (gt)
suy ra các đoạn thẳng LP và MQ đều đi qua A ( tính chất của ba đường trung tuyến)
Câu 2: Cho ΔABC có BM, CN là hai đường trung tuyến cắt nhau tại G. Kéo dài BM lấy đoạn ME=MG. Kéo dài CN lấy đoạn NF=NG. Chứng minh:
a) EF=BC
b) Đường thẳng AG đi qua trung điểm BC.
Cách giải:
a) Ta có BM và CN là hai đường trung tuyến gặp nhau tại G nên G là trọng tâm của tam giác ΔABC.
⇒ GC = 2GN
mà FG = 2GN ⇒ GC=GF
Tương tự BG, GE và ∠G1 = ∠G2 (đd). Do đó ΔBGC = ΔEGF(c.g.c))
Suy ra BC = EF
b.) G là trọng tâm nên AG chính là đường trung tuyến thứ ba trong tam giác ABC nên AG đi qua trung điểm của BC.
Từ khóa » Trung Tuyến Am Là Gì
-
Công Thức Tính độ Dài Trung Tuyến Trong Tam Giác & Các Dạng Bài Tập
-
Định Nghĩa đường Trung Tuyến Là Gì? - DINHNGHIA.VN
-
Đường Trung Tuyến Là Gì?
-
Đường Trung Tuyến: Lý Thuyết, Tính Chất, Công Thức Tính Trong Tam Giác
-
Đường Trung Tuyến Là Gì? Tính Chất, Công Thức Tính đường Trung Tuyến
-
Đường Trung Tuyến Là Gì? Công Thức, Tính Chất đường Trung Tuyến ...
-
Định Nghĩa đường Trung Tuyến Của Tam Giác Và Một Số Dạng Toán ...
-
Công Thức Tính độ Dài đường Trung Tuyến Ôn Tập Toán 10
-
Trung Tuyến – Wikipedia Tiếng Việt
-
Định Nghĩa Và Công Thức đường Trung Tuyến (bài Tập Thực Hành)
-
Đường Trung Tuyến Là Gì? Tính Chất đường Trung Tuyến Trong Tam Giác
-
Công Thức Tính độ Dài đường Trung Tuyến
-
Tam Giác ABC Có Trung Tuyến AM đồng Thời Là Phân Giác, Cmr Tam ...
-
Đường Trung Tuyến Là Gì? Lý Thuyết, Công Thức Và Bài Tập