Erf -- From Wolfram MathWorld
is the "error function" encountered in integrating the normal distribution (which is a normalized form of the Gaussian function). It is an entire function defined by
| (1) |
Note that some authors (e.g., Whittaker and Watson 1990, p. 341) define without the leading factor of
.
Erf is implemented in the Wolfram Language as Erf[z]. A two-argument form giving is also implemented as Erf[z0, z1].
Erf satisfies the identities
| (2) | |||
| (3) | |||
| (4) |
where is erfc, the complementary error function, and
is a confluent hypergeometric function of the first kind. For
,
| (5) |
where is the incomplete gamma function.
Erf can also be defined as a Maclaurin series
| (6) | |||
| (7) |
(OEIS A007680). Similarly,
| (8) |
(OEIS A103979 and A103980).
For ,
may be computed from
| (9) | |||
| (10) |
(OEIS A000079 and A001147; Acton 1990).
For ,
| (11) | |||
| (12) |
Using integration by parts gives
| (13) | |||
| (14) | |||
| (15) | |||
| (16) |
so
| (17) |
and continuing the procedure gives the asymptotic series
| (18) | |||
| (19) | |||
| (20) |
(OEIS A001147 and A000079).
Erf has the values
| (21) | |||
| (22) |
It is an odd function
| (23) |
and satisfies
| (24) |
Erf may be expressed in terms of a confluent hypergeometric function of the first kind as
| (25) | |||
| (26) |
Its derivative is
| (27) |
where is a Hermite polynomial. The first derivative is
| (28) |
and the integral is
| (29) |
Erf can also be extended to the complex plane, as illustrated above.
A simple integral involving erf that Wolfram Language cannot do is given by
| (30) |
(M. R. D'Orsogna, pers. comm., May 9, 2004). More complicated integrals include
| (31) |
(M. R. D'Orsogna, pers. comm., Dec. 15, 2005).
Erf has the continued fraction
| (32) | |||
| (33) |
(Wall 1948, p. 357), first stated by Laplace in 1805 and Legendre in 1826 (Olds 1963, p. 139), proved by Jacobi, and rediscovered by Ramanujan (Watson 1928; Hardy 1999, pp. 8-9).
Definite integrals involving include Definite integrals involving
include
| (34) | |||
| (35) | |||
| (36) | |||
| (37) | |||
| (38) |
The first two of these appear in Prudnikov et al. (1990, p. 123, eqns. 2.8.19.8 and 2.8.19.11), with ,
.
A complex generalization of is defined as
| (39) | |||
| (40) |
Integral representations valid only in the upper half-plane are given by
| (41) | |||
| (42) |
Từ khóa » Tính Erf
-
ERF (Hàm ERF) - Microsoft Support
-
Hướng Dẫn Sử Dụng Hàm Tính Erf Trong Excel
-
Hàm Lỗi – Wikipedia Tiếng Việt
-
Hàm ERF – Tích Phân - 500 Thủ Thuật Excel + Công Thức Exel
-
Error Function Calculator - Keisan
-
Ký Hiệu Erf Là Gì Vậy? - Giải Tích Toán Học
-
Hướng Dẫn Sử Dụng Hàm Tính Erf Trong Excel - Pinterest
-
Hàm Erf() Trong Python | Lập Trình Từ Đầu
-
2.10. Ham Ky Thuat
-
Trả Về Hàm Sai Số được Lấy Tích Phân Giữa Lower_limit Và Uper_limit ...
-
Điện Trở Hãm ERF-150WJ101 Omron Giá Tốt Nhất. - HopLongTech